CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 582

_id caadria2018_303
id caadria2018_303
authors Song, Jae Yeol, Kim, Jin Sung, Kim, Hayan, Choi, Jungsik and Lee, Jin Kook
year 2018
title Approach to Capturing Design Requirements from the Existing Architectural Documents Using Natural Language Processing Technique
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 247-254
doi https://doi.org/10.52842/conf.caadria.2018.2.247
summary This paper describes an approach to utilizing natural language processing (NLP) to capture design requirements from the natural language-based architectural documents. In various design stage of the architectural process, there are several different kinds of documents describing requirements for buildings. Capturing the design requirements from those documents is based on extracting information of objects, their properties, and relations. Until recently, interpreting and extracting that information from documents are almost done by a manual process. To intelligently automate the conventional process, the computer has to understand the semantics of natural languages. In this regards, this paper suggests an approach to utilizing NLP for semantic analysis which enables the computer to understand the semantics of the given text data. The proposed approach has following steps: 1) extract noun words which mostly represent objects and property data in Korean Building Act; 2) analyze the semantic relations between words, using NLP and deep learning; 3) Based on domain database, translate the noun words in objects and properties data and find out their relations.
keywords NLP (Natural Language Processing); Deep learning; Design requirements; Korean Building Act; Semantic analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2018_1671
id sigradi2018_1671
authors Brito, Michele; de Sá, Ana Isabel; Borges, Jéssica; Rena, Natacha
year 2018
title IndAtlas - Technopolitic platform for urban investigation
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1305-1312
summary This article presents the project of the urban research platform IndAtlas, currently in early development stage by UFMG’s Research Group Indisciplinar. Through the association of crowdsourcing tools, a spatial database and the production of visualizations of different types, it is intended to create a Web platform for collecting, analyzing and depicting information about processes of production and transformation of urban space. It is proposed that the phenomena (themes) investigated in the platform are approached mainly from four axes: 1) spatial / territorial; 2) temporal; 3) social; 4) communicational. To do this, we try to combine online collaborative maps with the production of dynamic timelines and visualizations of networks of social actors (graphs), connected with social networks and Wiki pages. The article will address the development of Indisciplinar’s working method, which guided the proposal of the platform, as well as the functional and technical aspects to be observed for its implementation, the proposed architecture and the importance of interoperability for the project. Finally, the inquiries derived from the first test experiment of an IndAtlas test prototype will be presented. The experiment took place in a workshop belonging to the Cidade Eletrônika 2018 Festival – an arts and technology event. The workshop was offered in January of the same year, and it proposed a collaborative cartography of the Santa Tereza neighborhood, in Belo Horizonte / MG – a traditional neighborhood of great importance for historical heritage, currently subject to great real estate pressure and the focus of a series of territorial disputes.
keywords IndAtlas, Crowdsourcing, Urban Technopolitics,, Digital Cartographies,, Spatial Data.
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
doi https://doi.org/10.52842/conf.caadria.2021.2.131
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_412
id ecaade2018_412
authors Flanagan, Robert
year 2018
title BIM’s Complexity and Ambiguity - BIM v. Paper Architecture
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 265-270
doi https://doi.org/10.52842/conf.ecaade.2018.1.265
summary Architects rely on the graphic language of words and art to bridge intention and design, just as it has always been. Yet, passing an idea or concept from mental imagery to design practice through 2D, 3D, and 4D design filters is especially challenging in BIM technology. Severe limitations hinder or even preclude BIMs use in certain complex design tasks, as identified in the Anti-Box, "The anti-box celebrates the death of the ninety-degree angle- in fact, every angle." (de Graaf 2017). Compatibility and constraints determine the most appropriate uses of BIM software, from designing mundane shopping mall developments to complex architectural engineering feats that stagger the imagination. BIM's main benefit is in the middle when it is creatively employed by professional architects in multi-discipline collaborations, well versed in symbolic representation, of designs conceived of multivalent design factors: narrative, form, function, multi-sensory access, materiality, space, and environment.
keywords BIM; analog; HIC; Constructivist; Chernikov; photomatch
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_392
id ecaade2018_392
authors Gargaro, Silvia, Cigola, Michela, Gallozzi, Arturo and Fioravanti, Antonio
year 2018
title Cultural Heritage Knowledge Context - A model based on Collaborative Cultural approach
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 205-214
doi https://doi.org/10.52842/conf.ecaade.2018.2.205
summary Cultural Heritage is a wide concept. It's what remains of the past generations Cultural Heritage includes tangible culture (such as buildings, monuments, landscapes, books, works of art and artifacts), intangible culture (such as folklore, music, traditions, language and knowledge) and natural heritage (including culturally significant landscapes, and biodiversity). A good preservation, restauration and valorization of Cultural Heritage embraces tangible and intangible culture, actually not evaluated in an holistic way.Cultural Heritage is not only an historical memory of the past, but the mirror of an anthropological reality that characterizes our personal and collective identity within a cultural context. The question is: How can we take into account these thought categories? The model proposed would be an used methodology to analyze the model for data acquisition, processing, modeling and implementation of knowledge on culture and social context through ontologies. The purpose of the research is to analyze the relationship between Cultural Context and Cultural Heritage.The contribution proposes an original approach to Cultural Heritage based on a social and cultural approach, transforming the user as an actor for the acquisition of raw data and cultural knowledge, applying the model to the Archaeological Complex of Casinum, in South Latium.
keywords Cultural Heritage; Context Knowledge; Intangible Knowledge; Ontologies; Human Behavior Constraints
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2018_1813
id sigradi2018_1813
authors Gomes Vieira de Jesus, Elaine; Leão de Amorim, Arivaldo; Groetelaars, Natalie Johanna; de Oliveira Fernandes, Vivian
year 2018
title Urban modeling for 3D GIS purposes from laser scanning: an implementation for university campus
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 617-624
summary 3D Geographic Information Systems (3D GIS) are systems capable of performing spatial analyzes that consider a three-dimensional representation of objects, through their planialtimetric coordinates. City Geography Markup Language (CityGML) is used for city and urban applications. The main challenges for this system implementation refer to the techniques used to obtain data, and their formats, in addition to the various software used in geometric modeling. In this way, this article aims to discuss geometric modeling for a university campus using airborne laser scanning data, aiming at the creation of database for applications development.
keywords 3D GIS; SIG 3D; CityGML; Geometric modeling
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_163
id ecaade2018_163
authors Hadighi, Mahyar and Duarte, Jose
year 2018
title Adapting Modern Architecture to a Local Context - A Grammar for Hajjar’s Hybrid Domestic Architecture
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 515-524
doi https://doi.org/10.52842/conf.ecaade.2018.2.515
summary The purpose of this study is to analyze Abraham William Hajjar's single-family houses in State College, PA, using shape grammar as a computational design methodology. Hajjar was a member of the architecture faculty at the Pennsylvania State College (now The Pennsylvania State University), a practitioner in State College, and an influential figure in the history of architecture in the area. In this study, shape grammars are used specifically to verify and describe influences of modern architecture, as defined by Hitchcock and Johnson (1932), and influences of local traditional American architecture on Hajjar's domestic architecture. The underlying hypothesis is that Hajjar's work is the result of a hybridity phenomenon that can be traced through a computational design methodology. The first step in this endeavor and the study focus is to establish Hajjar's single-family architectural language. Future work will be concerned with verifying and describing the hybridity between modern architecture and traditional architecture expressed in Hajjar's work by comparing his grammar with grammars underlying modern and traditional architecture likewise.
keywords shape grammar; modern architecture ; American architecture; William Hajjar; hybridity; single-family houses
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaaderis2018_115
id ecaaderis2018_115
authors Hadighi, Mahyar and Duarte, Jose
year 2018
title Local Adaptation of Modern Architecture - A Grammar for Hajjar’s Domestic Architecture
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 15-20
keywords The purpose of this study is to analyze Abraham William Hajjar's single-family houses in State College, PA, using shape grammar as a computational design methodology. Hajjar was a member of the architecture faculty at the Pennsylvania State College (now The Pennsylvania State University), a practitioner in State College and an influential figure in the history of architecture in the area. Shape grammars are used specifically to verify and describe the influences of modern architecture as defined by Hitchcock and Johnson (1932) and traditional American architecture in the area on Hajjar's domestic architecture. The underlying hypothesis is that the work of Hajjar is the result of a hybridity phenomenon that will be traced through a computational design methodology. The first step in this endeavor is to establish the single-family architectural language of Hajjar, which is briefly described in this paper. Future steps will aim at verifying and describing the hybridity between modern architecture and traditional architecture in his work by comparing Hajjar's grammar with grammars encoding modern and traditional architecture.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_365
id caadria2018_365
authors Ham, Jeremy J.
year 2018
title Exploring the Intersection of Music and Architecture Through Spatial Improvisation
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 121-130
doi https://doi.org/10.52842/conf.caadria.2018.1.121
summary Creative practice design research brings forth rich opportunities for the exploration of inter-domain connections between music and architecture. Through inter-disciplinary creative practice explorative project work founded on a methodology of improvisation on the digital drum kit, two stages of design research project work are outlined. In the first stage, a language of polyrhythmic drumming is parametrically spatialized as a reflective lens on an extant creative practice. From here, a new form of 'Spatial Improvisation' is explored, where conceptual spatial forms are generated from improvisations on the digital drum kit. This new musico-spatial design practice involves mediating a spatio-temporal-dynamical 'Y-Condition (Martin, 1994)' wherein temporal and dynamic design decisions translate from the musical domain into the spatial domain through 'spatial thinking-in-action'.
keywords Music and Architecture; Design Research ; Spatial Improvisation; Design Process; Parametric Digital Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_280
id ecaade2018_280
authors Herthogs, Pieter, Tunçer, Bige, Schläpfer, Markus and He, Peijun
year 2018
title A Weighted Graph Model to Estimate People's Presence in Public Space - The Visit Potential Model
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 611-620
doi https://doi.org/10.52842/conf.ecaade.2018.2.611
summary In this paper, we introduce the Visit Potential Model (VPM), an integrated model to evaluate public space characteristics. It is an initial attempt to model and predict the potential presence of people in public places (i.e. their Visit Potential); the presence and flux of people being the underlying driver of all public space. We achieved this by combining a proposed universal law of visit frequencies in cities with a gravity measure for accessibility. We also demonstrate how this model can be extended to represent public space quality and liveliness throughout the hours of the day - a crucial concept in public space design. The paper primarily discusses the development of the calculation model, describing three variants to calculate Visit Potential values for public spaces: based on a public space's accessibility to people, the potential number of people visiting attractors, and the number of people moving through and occupying a public space.
keywords public space quality; liveliness; weighted graphs; accessibility; walkability
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2018_126
id caadria2018_126
authors Khean, Nariddh, Kim, Lucas, Martinez, Jorge, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title The Introspection of Deep Neural Networks - Towards Illuminating the Black Box - Training Architects Machine Learning via Grasshopper Definitions
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 237-246
doi https://doi.org/10.52842/conf.caadria.2018.2.237
summary Machine learning is yet to make a significant impact in the field of architecture and design. However, with the combination of artificial neural networks, a biologically inspired machine learning paradigm, and deep learning, a hierarchical subsystem of machine learning, the predictive capabilities of machine learning processes could prove a valuable tool for designers. Yet, the inherent knowledge gap between the fields of architecture and computer science has meant the complexity of machine learning, and thus its potential value and applications in the design of the built environment remain little understood. To bridge this knowledge gap, this paper describes the development of a learning tool directed at architects and designers to better understand the inner workings of machine learning. Within the parametric modelling environment of Grasshopper, this research develops a framework to express the mathematic and programmatic operations of neural networks in a visual scripting language. This offers a way to segment and parametrise each neural network operation into a basic expression. Unpacking the complexities of machine learning in an intermediary software environment such as Grasshopper intends to foster the broader adoption of artificial intelligence in architecture.
keywords machine learning; neural network; action research; supervised learning; education
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_322
id ecaade2018_322
authors Koehler, Daniel, Galika, Anna, Bai, Junyi and Pu, Qiuru
year 2018
title Blockerties - The Distributive Design of the Blockchain Technology and its Impact on Urban Form.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 551-560
doi https://doi.org/10.52842/conf.ecaade.2018.1.551
summary This paper aims to link the blockchain technology with property issues and in extend architectural design decisions at the urban scale. In an urban design context, this paper investigates the new potentials of urban form connected to the application of the logic of the blockchain to urban design. With this, the article concentrates on the distributed way of sharing information, with no intent to focus on cryptography issues related to the blockchain. Transferring the blockchain's core concepts of data distribution through ledgers, to patterns of shared and private owned spaces it can lead to what we propose as polyphonic spaces, with overlapping uses. Urban realm, designed as a chain, initiates with the binary condition of private and shared but handles it as a way to interact, through nesting, its initial parts. We think that the blockchain theory is capable of challenging architecture by shifting the weight from individual elements of composition to compound entities (block) that incorporate all the information needed.Please write your abstract here by clicking this paragraph.
keywords Blockchain; Urban Form; Combinatorics; Typology; Mereology; Aggregative Architecture
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_317
id ecaade2018_317
authors Kontovourkis, Odysseas and Doumanidis, Constantine C
year 2018
title ICARUS Project - An Open Source Platform for Computer Programming in Architectural Teaching and Research
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 341-350
doi https://doi.org/10.52842/conf.ecaade.2018.1.341
summary This paper, presents an ongoing work entitled ICARUS, an abbreviation for 'Integrating Computerized ARchitecture with USers'. The aim of this work is to develop an open source platform for computer programming implemented in architecture, for teaching and research. In particular, the platform provides the framework for a simplified and user friendly textual programming methodology for the needs of our architectural institution. It consists of several modules like coding, plug-in and repository development, targeting to be publicly available in the future. The platform is created based on the Python programming language, which is run in Grasshopper, a plug-in for Rhino 3D. In the first phase of ICARUS development, several case studies within the framework of a postgraduate course are conducted, aiming at providing an overview of its potentials, limitations and generally, its impact on establishing a useful methodology for algorithmic thinking among students with little or no prior computer programming skills.
keywords Computer programming; Open source platform; Parametric design; Plug-in development; Algorithmic thinking
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_166
id acadia18_166
authors Kvochick, Tyler
year 2018
title Sneaky Spatial Segmentation. Reading Architectural Drawings with Deep Neural Networks and Without Labeling Data
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 166-175
doi https://doi.org/10.52842/conf.acadia.2018.166
summary Currently, it is nearly impossible for an artificial neural network to generalize a task from very few examples. Humans, however, excel at this. For instance, it is not necessary for a designer to see thousands or millions of unique examples of how to place a given drawing symbol in a way that meets the economic, aesthetic, and performative goals of the project. In fact, the goals can be (and usually are) communicated abstractly in natural language. Machine learning (ML) models, however, do need numerous examples. The methods that we explore here are an attempt to circumvent this in order to make ML models more immediately useful.

In this work, we present progress on the application of contemporary ML techniques to the design process in the architecture, engineering, and construction (AEC) industry. We introduce a technique to partially circumvent the data hungriness of neural networks, which is a significant impediment to their application outside of the ML research community. We also show results on the applicability of this technique to real-world drawings and present research that addresses how some fundamental attributes of drawings as images affect the way they are interpreted in deep neural networks. Our primary contribution is a technique to train a neural network to segment real-world architectural drawings after using only generated pseudodrawings.

keywords full paper, representation + perception, computation, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id sigradi2018_1593
id sigradi2018_1593
authors Montesião de Sousa, Gustavo Henrique
year 2018
title Language design for modelling: a cognitive approach
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1039-1044
summary Programming languages have traditionally being designed or chosen to be used in modelling systems with little care to what should be its central concern: the model, and its relation to the programmer’s body, to her self,to her being in the world, causing frustration to the student trying to learn the basics of programmatically modelling. This work presents an alternative approach for the design of a language for modelling, aimed to mitigate some of the cognitive barriers normally found in traditional systems.
keywords Computational design; programming languages; cognition
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2018_229
id ecaade2018_229
authors Rogers, Jessie and Schnabel, Marc Aurel
year 2018
title Digital Design Ecology - An Analysis for an Intricate Framework of Architectural Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 459-468
doi https://doi.org/10.52842/conf.ecaade.2018.1.459
summary This paper evaluates, along with expert assessment, the novel, evolving and creative instruments employed for a digital design process. Applications within this paper derive outputs which are attention-grabbing. These include Agent Simulations, Artistic Image Processing, Realistic Site Geometry, Projected 3D Space Sketching, Immersive 3D Space Sketching, Rhinoceros3D, Grasshopper3D, Fuzor, and Immersive Virtual Reality Presentation. The expert evaluations conclude that all design instruments and methodologies implemented within the digital design ecology work together well for educational purposes. Within the professional practice, however, the various tools could be implemented seamlessly; whereas some of them would not suit the industry from a time-cost perspective. Throughout this paper reason and insight becomes explained and is clear as to why various applications should be selected within various modes of operandi for design processes.
keywords Methodology Ecology; Agent Simulation; Digital Design; Virtual Reality; Photogrammetry; Image Processing
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_197
id caadria2018_197
authors Rogers, Jessie, Schnabel, Marc Aurel and Lo, Tian Tian
year 2018
title Digital Culture - An Interconnective Design Methodology Ecosystem
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 493-502
doi https://doi.org/10.52842/conf.caadria.2018.1.493
summary Transitioning away from traditional design methodology, for example, paper sketching, CAAD works, and 'flat screen' rendering, this paper proposes a new methodological ecosystem of which tests its validity within a studio-based case study. The focus will prove whether dynamic implementation and interconnectivity of evolving design tools can create richness and complexity of a design outcome through arbitrary phases of a generative design methodology ecosystem. Processes tested include combinations of agent simulations, artistic image processing analysis, site photogrammetry, 3D immersive sketching both abstract and to site-scale, parametric design generation, and virtual reality style presentations. Enhancing the process of design with evolving techniques in a generative way which dynamically interconnects will stimulate a digital culture of design generation that includes new aspects of interest and introduces innovative opportunities within all corners of the architectural realm. Methodology components within this ecosystem of interaction prove that the architecture cannot be as rich and complex without the utilisation of all strengths within each unique design tool.
keywords Methodology Ecosystem; Simulation; Immersive; Virtual Reality; Photogrammetry
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_166
id ecaade2018_166
authors Unger, Pawe³ and Rom?o, Luís
year 2018
title The Game of Urban Attractiveness - Shape Grammars and Cellular Automata Based Tool for Prediction of Human's Behaviour in Cities
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 629-638
doi https://doi.org/10.52842/conf.ecaade.2018.2.629
summary This paper presents a way to predict people's interest in a public space based on a space's "attractiveness" as a movement attractor. Two generative systems are integrated into the prediction model. The Cellular Automata (CA) is the core of simulation engine and the Shape Grammars (SG) is a descriptive language for the CA rules. Both, CA and SG exhibit complementary features counteracting each other's drawbacks. Having translated social behaviour into a set of rules, the CA algorithm applies them to distinguish people's leisure interest attractors from places with a minor attractiveness. The tool is designed to be used at various urban scales by city planners and venture capitalists. It is dedicated towards the early stage of planning process to evaluate the future attractiveness of places. The case study is located in the central district of Lisbon, Bairro Alto. One of the important aspects are description of the rules with SG and interpretation of the CA results. Implemented in Python for Grasshopper and visualised in Rhinoceros3D. The article does not present the final solution, rather is an experimental attempt to interpret and describe the already explored urban context of Cellular Automata.
keywords Behaviour Prediction; Cellular Automata; Shape Grammars; Space Attractiveness; Urban Simulation
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_279
id ecaade2018_279
authors Wortmann, Thomas, Akbar, Zuardin and Schroepfer, Thomas
year 2018
title Surveying Fitness Landscapes with Performance Explorer - Supporting the Design of a Better Tomorrow with Interactive Visualizations
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2018.1.621
summary Increasing applications of parametric design and performance simulations by architectural designers present opportunities to design more resource- and energy-efficient buildings via simulation-based optimization. But Architectural Design Optimization (ADO) is less widespread that one might expect, due to, among other challenges, the problematic integration of optimization with architectural design. This problematic integration stems from a contrast between "wicked" or "co-evolving" architectural design problems and optimization problems. To mitigate the contrast between architectural and optimization problems, this paper presents Performance Explorer, an interactive, visual tool for performance-informed design space exploration (DSE). Performance-informed DSE emphasizes selection, refinement, and understanding over finding highest-performing design candidates. Performance Explorer allows interactive DSE via a visualization of a fitness landscape, with real-time feedback provided with a surrogate model. Performance Explorer is evaluated through a user test with thirty participants and emerges as more supportive and enjoyable to use than manual search and/or optimization.
keywords Architectural Design Optimization; Performance-informed Design; Interactive Visualization; Design Tool
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia18_186
id acadia18_186
authors Yin, Hao; Guo, Zhe; Zhao, Yao; Yuan, Philip F.
year 2018
title Behavior Visualization System Based on UWB Positioning Technology
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 186-195
doi https://doi.org/10.52842/conf.acadia.2018.186
summary This paper takes behavioral performance as a starting point and uses ultra-wideband (UWB) positioning technology and visualization methods to accurately collect and present in-place behavioral data so as to explore the behavioral characteristics of space users. In this process, we learned the observation, quantification, and presentation of behavioral data from the evolution of behavioral research. Secondly, after a comparative analysis of four types of indoor positioning technologies, we selected UWB-positioning technology and the JavaScript programming language as the development tools for a behavior visualization system. Next, we independently developed the behavior visualization system, which required a deep understanding of the working principle of UWB technology and the visualization method of the JavaScript programming language. Finally, the system was applied to an actual space, collecting and presenting users’ behavioral characteristics and habits in order to verify the applicability of the system in the field of behavioral research.
keywords full paper, design tools, ai + machine learning, big data, behavioral performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_900877 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002