CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 540

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
doi https://doi.org/10.52842/conf.acadia.2018.366
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email efilena@noumena.io
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
doi https://doi.org/10.52842/conf.caadria.2018.2.185
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email nikita.ndb@gmail.com
last changed 2022/06/07 07:52

_id caadria2018_008
id caadria2018_008
authors Crolla, Kristof, Cheng, Paul Hung Hon, Chan, Ding Yuen Shan, Chan, Arthur Ngo Foon and Lau, Darwin
year 2018
title Inflatable Architecture Production with Cable-Driven Robots
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 9-18
doi https://doi.org/10.52842/conf.caadria.2018.1.009
summary This paper argues for alternative methods for the in-situ integration of robotics in architectural construction. Rather than promoting off-site pre-fabrication through industrial robot applications, it advocates for suspended, light-weight, cable-driven robots that allow flexible and safe onsite implementation. This paper uses the topic of large-scale inflatable architectural realisation as a study case to test the application of such a robot, here with a laser-cutter as end-effecter. This preliminary study covers the design, development, prototyping, and practical testing of an inherently scale-less cable-driven laser-cutter setup. This setup allows for the non-size specific cutting of inflatable structures' components which can be designed with common physics simulation engines. The developed robotic proof of concept forms the basis for several further and future study possibilities that merge the field of architectural design and implementation with mechanical and automation engineering.
keywords Cable-driven robots; In-situ robotic fabrication; Large-scale fabrication; Inflatable architecture; Cross-disciplinarily
series CAADRIA
email kristof.crolla@cuhk.edu.hk
last changed 2022/06/07 07:56

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email julian.raxworthy@canberra.edu.au
last changed 2021/08/09 13:13

_id ecaade2018_381
id ecaade2018_381
authors Jenney, Sarah Louise, Mühlhaus, Michael, Seifert, Nils, Petzold, Frank and Wiethoff, Alexander
year 2018
title Escaping Flatlands - Interdisciplinary Collaborative Prototyping Solutions to Current Architectural Topics
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 323-332
doi https://doi.org/10.52842/conf.ecaade.2018.1.323
summary The paper describes the interdisciplinary course, Escaping Flatlands, focusing on improving communication between students, who were either from the field of architecture or media informatics and human-computer interaction. There were two underlying themes. The first, the integration and augmentation of digital media and haptic models, escaping the flatland of classic architectural media such as paper or screens. The second theme, expert-laymen communication in public participation, was addressed in the contextual theme and content of the course task, the communication between students of different fields, and the presentation of robust working prototypes at an architectural exhibition. Students, in groups of four, developed three interactive architectural models enhanced with digital content. The course resulted in a number of benefits to students, the chairs, and implications for research. It also led to further collabourations between the two universities involved, including cross-over Bachelor and Master Thesis.
keywords tangible interfaces; human-computer interaction; smart city; public participation; model making; augmented reality
series eCAADe
email s.jenney@tum.de
last changed 2022/06/07 07:52

_id ecaadesigradi2019_370
id ecaadesigradi2019_370
authors Sperling, David, Vizioli, Simone Helena Tanoue, Botasso, Gabriel Braulio, Tiberti, Mateus Segnini, Santana, Eduardo Felipe Zambom and Sígolo, Brianda de Oliveira Ordonho
year 2019
title Crossing Timelines - Main research topics in the histories of eCAADe and SIGraDi
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 407-416
doi https://doi.org/10.52842/conf.ecaade.2019.1.407
summary Being in tune with the joint eCAADe and SIGraDi conference, this paper systematizes and analyzes data related to the set of papers presented in the history of the conferences of both societies. Which paths traced from eCAADe and SIGraDi brought us to the "architecture in the age of the fourth industrial revolution"? This paper describes a bibliometric study focused on eCCADe and SIGraDi papers from 2003 to 2018 retrieved from CumInCad by using an open source software developed by the team for this research. The most used keywords and most cited authors, cross-citations between societies and time series about this data were synthesized, recovering part of the histories of these societies. Some similarities and differences between them are pointed out allowing to understand their past for better drawing their future.
keywords CAAD; History; Bibliometrics; Cumincad; eCAADe; SIGraDi
series eCAADeSIGraDi
email sperling@sc.usp.br
last changed 2022/06/07 07:56

_id sigradi2018_1791
id sigradi2018_1791
authors Tosello, María Elena; Bredanini Colombo, María Georgina; Zorzón, Cecilia Verónica; Fabián Jereb, Marcelo
year 2018
title Critical Media. Proposals to articulate and activate devices of territorial transformation.
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1340-1346
summary This paper discusses the aims of media and technologies from a political insight, knowing the shortcomings and contradictions that cross the Latin American countries, for the purpose of being able to visualize them, think them and provide possible solutions, taking advantage of the creative potential of the university. With this objective, we developed an experience that integrated a research project on the design and production of artifacts, interfaces and representations capable of articulating the links between subjects, actions and dimensions, with the teaching and learning processes of an interdisciplinary design workshop, that created and activated territorial transformation devices with a sense of community collaboration.
keywords Digital Media; Critical Theory; Participative Design; Collaborative Design; Learning Process
series SIGRADI
email maritosello@gmail.com
last changed 2021/03/28 19:59

_id ecaade2018_189
id ecaade2018_189
authors Zardo, Paola, Quadrado Mussi, Andréa and Lima da Silva, Juliano
year 2018
title The Role of Digital Technologies in Promoting Contemporary and Collaborative Design Processes
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 469-478
doi https://doi.org/10.52842/conf.ecaade.2018.1.469
summary Digital technologies and contemporary CAAD systems are increasingly being adopted in architectural practice. Thus, their impacts on buildings design process need to be addressed and explored, as there are signs of a potential revolution in AEC industry. This paper presents a methodology and preliminary results of a work-in-progress for a Master of Science dissertation. The main purpose of the study is to find similarities in practice in order to determine main characteristics and fundamentals of contemporary design process. It consists of a design praxiology approach according to Cross' taxonomy of design research. Three project cases developed by digital processes and explored by secondary data from literature reviews, complemented by documentary research, are presented as preliminary results, as well as their main similarities. Through the analysis of the cases, it was verified that the presence of BIM, parametric modeling and digital fabrication overlaps and promotes holistic and largely collaborative design processes. The role of collaboration is highlighted, which was presented as a key factor for the success of the projects. Future results from the described methodology should allow a more detailed and in-depth characterization of the contemporary design process.
keywords digital technologies; contemporary design process; design praxiology
series eCAADe
email pazardo@gmail.com
last changed 2022/06/07 07:57

_id acadia18_108
id acadia18_108
authors Sanchez, Jose
year 2018
title Platforms for Architecture: Imperatives and Opportunities of Designing Online Networks for Design
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 108-117
doi https://doi.org/10.52842/conf.acadia.2018.108
summary The rise of platforms such as Facebook, YouTube, and Uber, initially celebrated as part of a disruptive new era of the internet, has slowly been reassessed as a problematic and unregulated form of twenty-first-century info-capitalism that contributes to inequality, mistrust, and user polarization. The internet has become a place for content creation, not only consumption, and the content freely created by the network of users has defined a self-organizing system of ad-hoc audiences following echo chambers organized through artificial intelligence, which amplifies previously identified trends. While a large portion of the content created by users seems to be aimed at personal forms of entertainment, a few remarkable projects, such as Wikipedia, have allowed hundreds of users to contribute to a collective goal. While we can observe that the platform model has appeared in diverse disciplines, allowing the creation of content from news articles to music, we have not seen the emergence of a robust design platform intended to proliferate and advance the discipline of architecture.

This paper makes the case that video game technology and its audiences have reached a state of technical capability that could allow for architectural platforms to emerge, one in which players could learn, create, and share architectural designs. Such a platform comes with a series of ethical imperatives, questions of value proposition, and liabilities, as well as a high potential to communicate and proliferate architectural knowledge and know-how. Common’hood, currently under development, will be used as a case study to engage the development of an ethical architectural platform that develops a proposition towards authorship, ownership, and collective engagement.

keywords full paper, platforms, capitalism, network, video game, combinatorics, information theory, entropy, co-ops, platform cooperativism, privacy, encryption
series ACADIA
type paper
email jomasan@gmail.com
last changed 2022/06/07 07:56

_id ecaade2018_210
id ecaade2018_210
authors Ezzat, Mohammed
year 2018
title A Computational Tool for Mapping the Users' Urban Cognition - A Framework and a Representation for the Evolutionary Optimization of the Fuzzy Binary Relation between the Urban Conceptions of "Us" and "Others"
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 667-676
doi https://doi.org/10.52842/conf.ecaade.2018.1.667
summary The paper proposes a computational tool for simulating the users' urban cognitive systems, or more specifically the long-term memory associated with the knowledge of urbanism and its related urban visual features. The tool builds on our comprehensive theory of Urbanism, which presents a monolithic, structured, comprehensive, professional conception of Urbanism based on which any relativistic users' urban conceptions could be predicted as a restructuring of the professional conception. These versatile relativistic conceptions would emerge based on a nurturing environment, which is a conception of the empirical/anthropological collected data of the intended users' reflections against their preferred constructed urban environments. Once the users' conceptions of Urbanism are formulated, which is the first phase of the simulation, the users' impressions against any examined urban constructs are attainable, which is the second phase of the simulation. The two phases, the framework, would be monolithically represented by a proposed novel cellular graph. The proposed computational tool is thought of as a robust technique for the computational incorporation of the users' urban identity, and some of its constituents could be considered as a needed common platform of communication for a successful Human-Computer interaction in the field of urban analysis/design.
keywords a comprehensive model of Urbanism; a default professional conception of Urbanism; the relativistic users' conceptions of Urbanism ; recognized extracted urban features ; the users' urban identity; A comprehensive theory for space syntax:
series eCAADe
email mohammed.ezzat@guc.edu.eg
last changed 2022/06/07 07:55

_id ecaade2018_322
id ecaade2018_322
authors Koehler, Daniel, Galika, Anna, Bai, Junyi and Pu, Qiuru
year 2018
title Blockerties - The Distributive Design of the Blockchain Technology and its Impact on Urban Form.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 551-560
doi https://doi.org/10.52842/conf.ecaade.2018.1.551
summary This paper aims to link the blockchain technology with property issues and in extend architectural design decisions at the urban scale. In an urban design context, this paper investigates the new potentials of urban form connected to the application of the logic of the blockchain to urban design. With this, the article concentrates on the distributed way of sharing information, with no intent to focus on cryptography issues related to the blockchain. Transferring the blockchain's core concepts of data distribution through ledgers, to patterns of shared and private owned spaces it can lead to what we propose as polyphonic spaces, with overlapping uses. Urban realm, designed as a chain, initiates with the binary condition of private and shared but handles it as a way to interact, through nesting, its initial parts. We think that the blockchain theory is capable of challenging architecture by shifting the weight from individual elements of composition to compound entities (block) that incorporate all the information needed.Please write your abstract here by clicking this paragraph.
keywords Blockchain; Urban Form; Combinatorics; Typology; Mereology; Aggregative Architecture
series eCAADe
email d.koehler@ucl.ac.uk
last changed 2022/06/07 07:51

_id ijac201816302
id ijac201816302
authors Schnabel, Marc Aurel and Blaire Haslop
year 2018
title Glitch architecture
source International Journal of Architectural Computing vol. 16 - no. 3, 183-198
summary Architectural designs are visualised on computer screens through arrays of pixels and vectors. These representations differ from the reality of buildings, which over time will unavoidably age and decay. How, then, do digital designs age over time? Do we interpret glitching as a sudden malfunction or fault in the computation of the design’s underlying data, or as digital decay resulting not from the wear and tear of tangible materials but from the decomposition of the binary code, or from system changes that cannot appropriately interpret the data? By exploring a series of experimental design practices for deployments and understandings that are the consequence of malfunctions during computational processing, glitches are reinterpreted. Advancing from two-dimensional glitch art techniques into three-dimensional interpretations, the research employs a methodology of systematic iterative processes to explore design emergence based on glitches. The study presents digital architectural form existing solely in the digital realm, as an architectural interpretation of computational glitches through both its design process and aesthetic outcome. Thus, this research intends to bring a level of authenticity to the field through three-dimensional interpretations of glitch in an architectural form.
keywords Digital decay, glitch, digital design methods, glitch-space, data interpretation
series journal
email marcaurel.schnabel@vuw.ac.nz
last changed 2019/08/07 14:03

_id ecaade2018_170
id ecaade2018_170
authors Shahsavari, Fatemeh, Koosha, Rasool, Vahid, Milad R., Yan, Wei and Clayton, Mark
year 2018
title Towards the Application of Uncertainty Analysis in Architectural Design Decision-Making - A Probabilistic Model and Applications
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 295-304
doi https://doi.org/10.52842/conf.ecaade.2018.1.295
summary To this day, proper handling of uncertainties -including unknown variables in primary stages of a design, an actual climate data, occupants' behavior, and degradation of material properties over the time- remains as a primary challenge in an architectural design decision-making process. For many years, conventional methods based on the architects' intuition have been used as a standard approach dealing with uncertainties and estimating the resulting errors. However, with buildings reaching great complexity in both their design and material selections, conventional approaches come short to account for ever-existing but unpredictable uncertainties and prove incapable of meeting the growing demand for precise and reliable predictions. This study aims to develop a probability-based framework and associated prototypes to employ uncertainty analysis and sensitivity analysis in architectural design decision-making. The current research explores an advanced physical model for thermal energy exchange characteristics of a hypothetical building and uses it as a test case to demonstrate the proposed probability-based analysis framework. The proposed framework provides a means to employ uncertainty and sensitivity analysis to improve reliability and effectiveness in a buildings design decision-making process.
keywords Probability-based design decision; uncertainty analysis; sensitivity analysis; building energy consumption model
series eCAADe
email aban2735@tamu.edu
last changed 2022/06/07 07:57

_id ecaade2018_286
id ecaade2018_286
authors Swahn, Erik
year 2018
title Markovian Drift - Iterative substitutional synthesis of 2D and 3D design data using Markov models of source data
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 113-120
doi https://doi.org/10.52842/conf.ecaade.2018.2.113
summary This paper describes a general method for synthesizing discrete 2D and 3D output by building probabilistic models of rasterized or voxelized training data, and subsequently synthesizing new data iteratively by substituting cells or groups of cells in accordance with a learned transition matrix. The process is non-deterministic, stochastic and unsupervised. The size of the source data and output is arbitrary, and the source and output data can have an arbitrary set of cell states. Possible variations of the process are discussed, as well as possible applications in design processes on multiple scales.
keywords Generative design; formal analysis; probabilistic models; Markov random fields; voxels; morphology
series eCAADe
email erik.swahn@gmail.com
last changed 2022/06/07 07:56

_id ecaade2018_370
id ecaade2018_370
authors Abdelmohsen, Sherif, Massoud, Passaint, El-Dabaa, Rana, Ibrahim, Aly and Mokbel, Tasbeh
year 2018
title A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 253-262
doi https://doi.org/10.52842/conf.ecaade.2018.2.253
summary Low-cost programmable materials such as wood have been utilized to replace mechanical actuators of adaptive architectural skins. Although research investigated ways to understand the hygroscopic response of wood to variations in humidity levels, there are still no clear methods developed to track and analyze such response. This paper introduces a computational method to analyze, track and store the hygroscopic response of wood through image analysis and continuous tracking of angular measurements in relation to time. This is done through a computational closed loop that links the smart material interface (SMI) representing hygroscopic response with a digital and tangible interface comprising a Flex sensor, Arduino kit, and FireFly plugin. Results show no significant difference between the proposed sensing mechanism and conventional image analysis tracking systems. Using the described method, acquiring real-time data can be utilized to develop learning mechanisms and predict the controlled motion of programmable material for adaptive architectural skins.
keywords Hygroscopic properties of wood; Adaptive architecture; Programmable materials; Real-time tracking
series eCAADe
email sherifmorad@aucegypt.edu
last changed 2022/06/07 07:54

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email abdulmalik.abdulmawla@uni-weimar.de
last changed 2022/06/07 07:54

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email aaadel@umich.edu
last changed 2023/10/22 12:06

_id acadia18_394
id acadia18_394
authors Adel, Arash; Thoma, Andreas; Helmreich, Matthias; Gramazio, Fabio; Kohler, Matthias
year 2018
title Design of Robotically Fabricated Timber Frame Structures
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 394-403
doi https://doi.org/10.52842/conf.acadia.2018.394
summary This paper presents methods for designing nonstandard timber frame structures, which are enabled by cooperative multi-robotic fabrication at building-scale. In comparison to the current use of automated systems in the timber industry for the fabrication of plate-like timber frame components, this research relies on the ability of robotic arms to spatially assemble timber beams into bespoke timber frame modules. This paper investigates the following topics: 1) A suitable constructive system facilitating a just-in-time robotic fabrication process. 2) A set of assembly techniques enabling cooperative multi-robotic spatial assembly of bespoke timber frame modules, which rely on a man-machine collaborative scenario. 3) A computational design process, which integrates architectural requirements, fabrication constraints, and assembly logic. 4) Implementation of the research in the design and construction of a multi-story building, which validates the developed methods and highlights the architectural implications of this approach.
keywords full paper, fabrication & robotics, generative design, computation, timber architecture
series ACADIA
type paper
email adel@arch.ethz.ch
last changed 2022/06/07 07:54

_id sigradi2018_1628
id sigradi2018_1628
authors Agirbas, Asli
year 2018
title The Use of Multi-Software in Undergraduate Architectural Design Studio Education: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1059-1064
summary In the architectural design process, instead of using the computer programs effectively, the ability of choosing the most suitable program for the purpose takes place. However, different programs used in the design process serve different purposes. Therefore, the use of more than one program throughout the project design process arises. Every day the number of programs used increases rapidly. Hence, the designers find difficult to adapt this speed. The same applies to the students of architectural design studio course. Therefore, in this study with undergraduate architecture students, a pilot study focusing on the use of multi-software was conducted within the scope of architectural design studio. The process and outputs were evaluated.
keywords Use of multi-software; Contextual design; Architectural design education; CAAD
series SIGRADI
email asliagirbas@gmail.com
last changed 2021/03/28 19:58

_id sigradi2018_1619
id sigradi2018_1619
authors Agirbas, Asli
year 2018
title Creating Non-standard Spaces via 3D Modeling and Simulation: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1051-1058
summary Especially in the film industry, architectural spaces away from Euclidean geometry are brought to foreground. The best environment in which such spaces can be designed, is undoubtedly the 3D modeling environment. In this study, an experimental study was carried out on the creation of alternative spaces with undergraduate architectural students. Via using 3D modeling and various simulation techniques in the Maya software, students created spaces, which were away from the traditional architectural spaces. Thus, in addition to learning the 3D modeling software, architectural students learned to use animation and simulation as a part of design, not just as a presentation tool, and opening up new horizons for non-standard spaces was provided.
keywords 3D Modeling; Simulation; Animation; CAAD; Maya; Non-standard spaces
series SIGRADI
email asliagirbas@gmail.com
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_473279 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002