CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 559

_id ecaade2018_247
id ecaade2018_247
authors Ilunga, Guilherme and Leit?o, António
year 2018
title Derivative-free Methods for Structural Optimization
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 179-186
doi https://doi.org/10.52842/conf.ecaade.2018.1.179
summary The focus on efficiency has grown over recent years, and nowadays it is critical that buildings have a good performance regarding different criteria. This need prompts the usage of algorithmic approaches, analysis tools, and optimization algorithms, to find the best performing variation of a design. There are many optimization algorithms and not all of them are adequate for a specific problem. However, Genetic Algorithms are frequently the first and only option, despite being considered last resort algorithms in the mathematical field. This paper discusses methods for structural optimization and applies them on a structural problem. Our tests show that Genetic Algorithms perform poorly, while other algorithms achieve better results. However, they also show that no algorithm is consistently better than the others, which suggests that for structural optimization, several algorithms should be used, instead of simply using Genetic Algorithms.
keywords Derivative-free Optimization; Black-box Optimization; Structural Optimization; Algorithmic Design
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1631
id sigradi2018_1631
authors Godoi da Cruz, Renato; Arcipreste, Cláudia Maria; Lemieszek Pinheiro, Rafael; de Jesus Ribas, Rovadávia Aline
year 2018
title Generative design in the design development of metallic constructions
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 211-218
summary The present article describes the construction of a system that combines parametric modeling strategies and genetic algorithms for optimization. By means of the reformulation of the Darwinian evolutionary process, it is sought to systematize a project process that allows the architect to act in the parameterization of the problems, beyond the mere formal proposition of solutions, in favor of the exploration of a greater variety of projective possibilities than would be possible using traditional design methods.
keywords Generative design; Evolutionary algorithms; Structural analysis; Environmental analysis and Metallic construction
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
doi https://doi.org/10.52842/conf.acadia.2018.434
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2018_216
id caadria2018_216
authors Yuan, Philip F., Chen, Zhewen and Zhang, Liming
year 2018
title Form Finding for 3D Printed Pedestrian Bridges
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 225-234
doi https://doi.org/10.52842/conf.caadria.2018.1.225
summary Due to the highly interrelation between architecture and engineering involved in the early design stage of 3D printing, form-finding is the critical step in the large-scale 3D printing projects. This paper focused on the research of form-finding applied in large-scale 3D printed structures, specifically, in the design of two pedestrian bridges. A three-step form finding approach was introduced in this paper. Multiple numerical methods were involved in the approach to find an optimal solution for both aesthetics and structural design for two 3D printed pedestrian bridges. The application of the three steps of form-finding, which take consideration of material properties, site limitations, applied loads etc., to the design of the large-scale 3D printed bridges were discussed in details in this paper. The approach of form-finding in an early designing stage disused in this paper helps to understand the combination of architecture and structure engineering.
keywords Form Finding; 3D Printing; Structural Performance; Material Performance; Topology Optimization
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_664
id caadria2019_664
authors Zhou, Yifan, Zhang, Liming, Wang, Xiang, Chen, Zhewen and Yuan, Philip F.
year 2019
title Exploration of Computational Design and Robotic Fabrication with Wire-Arc Additive Manufacturing Techniques
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 143-152
doi https://doi.org/10.52842/conf.caadria.2019.1.143
summary This paper discussed the exploration of computational design and robotic fabrication with Wire-Arc Additive Manufacturing techniques in a robotic metal printing workshop in Digital Futures 2018. Based on the previous research on structural-performance based design and robotic fabrication, this year's workshop mainly focused on the Wire-Arc Additive Manufacturing techniques and its possible outcomes. A prototype chair was tested for preparation. And the final target of the workshop was to build a bridge about 11m across the river. Through this metal printed bridge project, several computational optimization methods were applied to fulfill the final design. And Wire-Arc Additive Manufacturing techniques with robotic fabrication were carried out during the fabrication process.
keywords computational design; robotic fabrication; wire-arc additive manufacturing techniques
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_665
id caadria2019_665
authors Jin, Jinxi, Han, Li, Chai, Hua, Zhang, Xiao and Yuan, Philip F.
year 2019
title Digital Design and Construction of Lightweight Steel-Timber Composite Gridshell for Large-Span Roof - A Practice of Steel-timber Composite Gridshell in Venue B for 2018 West Bund World AI Conference
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 183-192
doi https://doi.org/10.52842/conf.caadria.2019.1.183
summary Timber gridshell is an efficient structural system. However, the feature of double curved surface result in limitation of practical application of timber gridshell. Digital technology provides an opportunity to break this limitation and achieve a lightweight free-form gridshell. In the practice of Venue B for 2018 West Bund World AI Conference, architects and structural engineers cooperated to explore innovative design of lightweight steel-timber composite gridshell with the help of digital tools. Setting digital technology as support and restrains of the project as motivation, the design tried to achieve the realization of material, structure, construction and spatial expression. The digital design and construction process will be discussed from four aspects, including form-finding of gridshell surface, steel-timber composite design, digital detailed design and model-based fabrication and construction. We focuses on the use of digital tools in this process, as well as the role of the design subject.
keywords Timber Gridshell; Steel-timber Composite; Digital Design and Construction; Lightweight Structure; Large-span Roof
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_422
id ecaade2018_422
authors Ku, Kihong and Gurjar, Satpal
year 2018
title Prototyping Method for Complex-Shaped Textile Composite Panels - Developing a digitally controlled reconfigurable mold
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 47-52
doi https://doi.org/10.52842/conf.ecaade.2018.2.047
summary While textile composites offer a wide range of formal flexibilities, a primary concern is the cost and time of creating custom mold surfaces which are typically produced through subtractive digital fabrication techniques. Alternative methods such as adjustable molds are used in high-end sail-making, and architectural researchers have examined reconfigurable molds, fiber sandwich fabrication methods, and mold-free fiber reinforced polymer (FRP) fabrication processes. In this paper, we discuss the development of a digitally controlled mold system for complex-shaped textile composite panels, aiming to reduce the need for custom milled molds. Experimental research started with producing composite samples from computer-numerically-controlled (CNC) milled foam molds. Subsequently, a digitally controlled deformable mold prototype was developed which incorporates a digital interface through which the architect's surface geometry is entered, analyzed, and transferred. The digital geometry directly controls the position of vertical actuators which adjusts the mold surface. Results of this ongoing project outline a digital process for fabricating textile composite panels, and help to define key parameters of the adjustable mold system including material properties, mechanical controls of the mold surface, paneling considerations, and digital interface.
keywords textile composites; reconfigurable mold; deformable mold; fiber reinforced polymer; digital fabrication; Arduino
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_277
id ecaade2018_277
authors Natividade, Veronica
year 2018
title Digital Design and Fabrication of Freeform Concrete Blocks - The experience of 'Cobogo Trança'
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 743-752
doi https://doi.org/10.52842/conf.ecaade.2018.1.743
summary This paper describes the methods and results of an experimental workshop held at the Department of Architecture of PUC-Rio devoted to exploring design alternatives and digital fabrication techniques to produce concrete façade elements for the Consulate General of Portugal building in Rio de Janeiro, Brazil. The workshop aimed the adoption of advanced computer-aided design and production methods within a rare and innovative university-industry collaboration context in Latin America. The paper aims to discuss contemporary concrete casting methods and its applicability, as well as the achievements and pitfalls of the adopted technique. The results are discussed under the light of Antoine Picon's notion of contemporary ornament and Branko Kolarevic's perspectives on digital imprecision.
keywords digital fabrication; free-form concrete block; design education; interdisciplinary collaboration
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2018_402
id ecaade2018_402
authors Ron, Gili, Shallaby, Sara and Antonako, Theofano
year 2018
title On-Site Fabrication and Assembly for Arid Region Settlements
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 801-810
doi https://doi.org/10.52842/conf.ecaade.2018.1.801
summary With fast growing population rates and the further desertification of the global climate, desert regions, covering one fifth of the world's surface, provide an opportunity for future habitats. However, their extreme climatic conditions and remoteness pose a planning challenge, currently addressed with prefabrication and layered design; wasteful and costly solutions. This article proposes a bespoke design, fabrication and assembly process: performed in-situ with using local resources and novel automation. The research addresses challenges in on-site robotic forming and assembly of mono-material discrete elements, made in waterless concrete of sand-Sulphur composite. The formed components are examined in formwork-free assembly of wall and arch, with Pick & Place tool-path. The component's design incorporates topological and osteomorphic interlocking, facilitating structural integrity, as well as self-shading and passive cooling, to fit with local climate. This work culminates in a design proposal for constructing desert habitats, climatically adapted for Zagora oasis in the Moroccan Sahara: a remote site of hyper-arid climate.
keywords Material System; Vernacular Architecture; Digital Morphogenesis; Topological Interlocking; Robotic Fabrication; Robotic Assembly
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_415
id ecaade2018_415
authors Shah, Anand and Sousa, José Pedro
year 2018
title A Robotically Fabricated Connection System as a Possible Solution for a Free-form "ROBO-WEB" Gridshell which Takes Inspirations from English Fan Vaulted Cathedrals
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 821-826
doi https://doi.org/10.52842/conf.ecaade.2018.1.821
summary Gridshell is a unique category of shell structures, which, by departing from a double-curved resistant form, concentrates the forces in its lattice members. Majority of the gridshell structures use quadrangular or triangular grid patterns because they can easily mesh and it is less complicated to resolve its details. This research project provides a unique robotically fabricated joinery system for free-form gridshells. The research project attempts to increase the versatility in terms of design and feasibility in terms of construction for future gridshell structures. It tries to merge the extremely efficient historical design principles with the new age design and construction methods. The lattice grid for the Robo-Web gridshell takes inspiration from the ribs of the English fan vaulted cathedrals. Based on the experiences gained through the research project the research concludes with a critical discussion of the practical applications and future scope of the free-form lattice grid and robotically fabricated joinery system.
keywords Gridshell; Robotics; Free-form; Fan-vaults
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia18_82
id acadia18_82
authors Sun, Chengyu; Zheng, Zhaohua; Sun, Tongyu
year 2018
title Hybrid Fabrication. A free-form building process with high on-site flexibility and acceptable accumulative error
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 82-87
doi https://doi.org/10.52842/conf.acadia.2018.082
summary Although digital fabrication has a booming development in the building industry, especially in freeform building, its further application in onsite operations is still limited because of the huge flexibility required in programming. On the contrary, traditional manual fabrication onsite deals perfectly with problems that always accompany fatal accumulative errors in freeform building. This study explores a hybrid fabrication paradigm to take advantage of both in an onsite freeform building project, in which there is a cycling human–computer interactive process consisting of manual operation and computer guidance in real time. A Hololens-Kinect system in a framework of typical project camera systems is used in the demonstration. When human builders perceive, decide, and operate the irregular foam bricks in a complex onsite environment, the computer keeps updating the current form through 3D scanning and prompting the position and orientation of the next brick through augmented display. From a starting vault, the computer always fine tunes its control surface according to the gradually installed bricks and keeps following a catenary formula. Thus, the hybrid fabrication actually benefits from the flexibility based on human judgment and operation, and an acceptable level of accumulative error can be handled through computer guidance concerning the structural performance and formal accuracy.
keywords work in progress, vr/ar/mr, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_261
id ecaade2018_261
authors Austern, Guy, Capeluto, Isaac Guedi and Grobman, Yasha Jacob
year 2018
title Rationalization and Optimization of Concrete Façade Panels
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 727-734
doi https://doi.org/10.52842/conf.ecaade.2018.1.727
summary The presented research develops methods for introducing fabrication constraints into architectural design, a process often referred to as design rationalization. In the first stage of the research, a computational method for evaluating the fabrication potential of geometries was developed. The method predicts the feasibility, material use and machining time of a geometry in relation to different fabrication techniques. It uses geometric properties to mathematically estimate these parameters without simulating the actual machining. The second stage of the research describes processes for adapting architectural designs to their fabrication technique. The evaluation method previously developed is used as a fitness criterion for a computational optimization algorithm aimed at adapting concrete façade elements to the fabrication constraints of their molds. A case study demonstrates how the optimization process succeeded in improving the feasibility of different geometries within a time-frame suitable to the architectural design process, and without significant changes to the initial design.
keywords Optimization; Digital Fabrication; Rationalization; Computational Design Process
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1609
id sigradi2018_1609
authors Chia, Hsu Yi; Hsien, Hsu Pei
year 2018
title The fabrication and application of parametric inflatable structure
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 684-689
summary This study uses parametric design to optimize the process and application of the inflatable method. Inflatable design has advantages of light weight, integral forming, volume change, etc., but the manufacturing process often requires the development of molds, a large number of manual heat seals, etc. Inspired by the structure principle of amputated wing tube structure, coupled with the advantages of parameterization and digital tool heat sealing, The same material can be made at different tightness, because the tight design with different angles has more structural characteristics and bending properties, thereby generating more complex spatial structures. Different materials also have corresponding manufacturing methods, which also increase the opportunities for application in architectural design.
keywords Robotic arms fabrication; Inflatable Shape-change; pneumatic; bending mechanism; pavilion design;
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_139
id ecaade2018_139
authors Cudzik, Jan and Radziszewski, Kacper
year 2018
title Artificial Intelligence Aided Architectural Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 77-84
doi https://doi.org/10.52842/conf.ecaade.2018.1.077
summary Tools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools that suit their specific needs. In some cases, they use artificial intelligence. Despite many similarities, they have different advantages and disadvantages. Therefore the change in the design process is more visible and unseen before solution are brought in the discipline. The article presents methods of applying the selected artificial intelligence algorithms: swarm intelligence, neural networks and evolutionary algorithms in the architectural practice by authors. Additionally research shows the methods of analogue data input and output approaches, based on vision and robotics, which in future combined with intelligence based algorithms, might simplify architects everyday practice. Presented techniques allow new spatial solutions to emerge with relatively simple intelligent based algorithms, from which many could be only accomplished with dedicated software. Popularization of the following methods among architects, will result in more intuitive, general use design tools.
keywords computer aideed design; artificial intelligence,; evolutionary algorithms; swarm behaviour; optimization; parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_433
id ecaade2018_433
authors Daher, Elie, Kubicki, Sylvain and Pak, Burak
year 2018
title Participation-based Parametric Design in Early Stages - A participative design process for spatial planning in office building
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 429-438
doi https://doi.org/10.52842/conf.ecaade.2018.1.429
summary The term participation has been used to define different activities, such as civil debate, communication, consultation, delegation, self-help construction, political decisions. However, participation in design started from the idea that individuals whom being affected by a design project must contribute to the design process. Recently, designers have been moving closer to the future users and developing new ways to empower them to get involved in the design process. In this paper we rethink the way the early design process is developed in a participatory approach thanks to parametric methods. A use case is proposed showing the potential of parametric design methods to empower the participation of users in the design of their facilities. The use case is dealing in particular with the spatial planning of an office building where the users together with the spatial planning team are able to design the layout spatial configuration by 1) fixing the objectives, 2) manipulating the model, 3)modifying some parameters, 4) visualizing the iterations and evaluating in a real-time each solution in an interactive 3D environment and together with facility managers 5) choosing the configuration of the spatial layout.
keywords Computational design; Participatory design; Optimization ; Parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_204
id ecaade2018_204
authors de Oliveira, Maria Jo?o, Moreira Rato, Vasco and Leit?o, Carla
year 2018
title KINE[SIS]TEM'17 - A methodological process for a Nature-Based Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 561-570
doi https://doi.org/10.52842/conf.ecaade.2018.1.561
summary Architecture is the mediator between the Environment and Humans. Nature maximal performance and minimal resources creations are Humanity inspiration that led us to exceed structural, material, mechanisms, tools, systems and methods boundaries (Oxman, 2010).Nature are the Architect of the most reliable and sustainable systems. Looking into Nature's lessons, this paper presents a Nature-based design methodology conducted during Kine[SIS]tem'17 Shading Systems International Summer School, held by the ISCTE-Instituto Universitário de Lisboa, Portugal, between 19th - 30th June 2017. The methodology encompasses two main stages, one before and other during the Summer School. From a pre-definition of context constrains, a nature based design strategy, to a planning of the manufacture and construction still during the phase of development of the design, conducted the Summer School participants through a defined biomimetic process that achieved the construction of 1:1 scale prototype.
keywords Kinesis; Shading; System; Nature-based design
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_416603 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002