CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ijac201816302
id ijac201816302
authors Schnabel, Marc Aurel and Blaire Haslop
year 2018
title Glitch architecture
source International Journal of Architectural Computing vol. 16 - no. 3, 183-198
summary Architectural designs are visualised on computer screens through arrays of pixels and vectors. These representations differ from the reality of buildings, which over time will unavoidably age and decay. How, then, do digital designs age over time? Do we interpret glitching as a sudden malfunction or fault in the computation of the design’s underlying data, or as digital decay resulting not from the wear and tear of tangible materials but from the decomposition of the binary code, or from system changes that cannot appropriately interpret the data? By exploring a series of experimental design practices for deployments and understandings that are the consequence of malfunctions during computational processing, glitches are reinterpreted. Advancing from two-dimensional glitch art techniques into three-dimensional interpretations, the research employs a methodology of systematic iterative processes to explore design emergence based on glitches. The study presents digital architectural form existing solely in the digital realm, as an architectural interpretation of computational glitches through both its design process and aesthetic outcome. Thus, this research intends to bring a level of authenticity to the field through three-dimensional interpretations of glitch in an architectural form.
keywords Digital decay, glitch, digital design methods, glitch-space, data interpretation
series journal
email
last changed 2019/08/07 14:03

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia18_394
id acadia18_394
authors Adel, Arash; Thoma, Andreas; Helmreich, Matthias; Gramazio, Fabio; Kohler, Matthias
year 2018
title Design of Robotically Fabricated Timber Frame Structures
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 394-403
doi https://doi.org/10.52842/conf.acadia.2018.394
summary This paper presents methods for designing nonstandard timber frame structures, which are enabled by cooperative multi-robotic fabrication at building-scale. In comparison to the current use of automated systems in the timber industry for the fabrication of plate-like timber frame components, this research relies on the ability of robotic arms to spatially assemble timber beams into bespoke timber frame modules. This paper investigates the following topics: 1) A suitable constructive system facilitating a just-in-time robotic fabrication process. 2) A set of assembly techniques enabling cooperative multi-robotic spatial assembly of bespoke timber frame modules, which rely on a man-machine collaborative scenario. 3) A computational design process, which integrates architectural requirements, fabrication constraints, and assembly logic. 4) Implementation of the research in the design and construction of a multi-story building, which validates the developed methods and highlights the architectural implications of this approach.
keywords full paper, fabrication & robotics, generative design, computation, timber architecture
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia22pr_124
id acadia22pr_124
authors Ago, Viola; Tursack, Hans
year 2022
title Understorey - A Pavilion in Parts
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 124-129.
summary In the summer of 2018, our collaboration was awarded a University Design Fellowship from the Exhibit Columbus organization to design, fabricate, and build a large pavilion in Columbus, Indiana as part of a biannual contemporary architecture exhibition. Our proposal for the competition was a pavilion that would double as an ecological education center. Our inspiration for this program was triggered in part by our reading of Jane Bennett’s materialist philosophy outlined in her book Vibrant Matter (2009). Through Bennett’s lens, our design rendered our site’s context as an animate field, replete with pre-existing material composites that we wanted to celebrate through a series of displays, information boards, and artificial lighting. In this, the installation would feature samples of local plants, minerals, and rocks, indigenous to Southern Indiana.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_389
id ecaade2018_389
authors Algeciras-Rodriguez, Jose
year 2018
title Stochastic Hybrids - From references to design options through Self-Organizing Maps methodology.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 119-128
doi https://doi.org/10.52842/conf.ecaade.2018.1.119
summary This ongoing research aims to define a general assisted design method to offer non-trivial design options, where form is produced by merging characteristics from initial reference samples collection that serves as an input set. This project explores design processes laying on the use of non-linear procedures and experiments with Self-Organizing Map (SOM), as neural networks algorithms, to generate geometries. All processes are applied to a set of models representing classic sculpture, whose characteristics are encoded by the SOM process. The result of it is a set of new geometry resembling characteristics from the original references. This method produces hybrid forms that acquire characteristics from several input references. The resulting hybrid entities are intended to be non-trivial solutions to specific design situations, so far, at the stage of this research, mainly formal requirements.
keywords Self-Orgnizing Maps; Cognitive Space; Design Options; Form Finding; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1300
id sigradi2018_1300
authors Alves de Almeida, Marcela; de Souza Nogueira, Yasmim
year 2018
title Parametricism as style: the relationship between methodology of scientific research programmes and parametric design
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 17-22
summary During the 1990s many architects, who dissociated from critical theory, were looking for new design methodologies that did not confine themselves as stylistic currents. One of these propractice movement is done by means of parametric design. Aiming to investigate the boundaries between methodology and style, this paper proposes to answer the question: does the parametric architecture constitute a new style, as Patrik Schumacher says? It reviews Heinrich Wölfflin concept of style in the contemporary context; it presents Imre Lakatos theory (methodology of scientific research programmes) and how Schumacher appropriates of it followed by a critical reflection on the limits of such appropriation.
keywords Parametric design; Style
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1484
id sigradi2018_1484
authors Alves de Oliveira, Amanda Aline; Sakurai, Tatiana
year 2018
title The transformations of the "Do-It-Yourself" culture and the context provided by digital manufacturing in furniture design
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1258-1263
summary This article seeks to deal with the evolution of the DIY culture during its most important periods for the history of furniture and confers great importance to the present reality that provides the constitution of these artifacts through digital manufacturing. Thus, issues such as the quality of what has been produced and even the relevance of design professionals of the culture of making in the digital era are treated.
keywords DIY; Digital fabrication; Furniture; Fab Labs Livres SP
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201816203
id ijac201816203
authors Anderson, Carl; Carlo Bailey, Andrew Heumann and Daniel Davis
year 2018
title Augmented space planning: Using procedural generation to automate desk layouts
source International Journal of Architectural Computing vol. 16 - no. 2, 164-177
summary We developed a suite of procedural algorithms for space planning in commercial offices. These algorithms were benchmarked against 13,000 actual offices designed by human architects. The algorithm performed as well as an architect on 77% of offices, and achieved a higher capacity in an additional 6%, all while following a set of space standards. If the algorithm used the space standards the same way as an architect (a more relaxed interpretation), the algorithm achieved a 97% match rate, which means that the algorithm completed this design task as well as a designer and in a shorter time. The benchmarking of a layout algorithm against thousands of existing designs is a novel contribution of this article, and we argue that it might be a first step toward a more comprehensive method to automate parts of the office layout process.
keywords Office design, design augmentation, space planning, automation, office layout, desk layouts
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_124
id ecaade2018_124
authors Asanowicz, Aleksander
year 2018
title Digital Architectural Composition in Virtual Space
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 703-710
doi https://doi.org/10.52842/conf.ecaade.2018.2.703
summary The paper is divided into two main parts. The first part refers to the history of attempts to use VR technology in the process of architectural space creation in a dynamic way. The second part presents the experiment carried out at our Faculty, in which we implemented VR in the Digital Architectural Composition course. This experiment was divided into two parts. In the both parts Google Blocks software was used. In the first part we have used the first exercises which was completed by students during the first semester in a traditional way (a cardboard mock-up) and then in the third semester as a digital model in Cinema 4D. It was a Solid form with. In the second part of this experiment we asked students to create a sketch of walk through space and they can created their own shapes in their design. The analysis of the results allows to formulate the thesis that there is a qualitative revolution in the area of human-computer interface. The main conclusion is that Virtual Reality eliminates the boundaries between the spectator and the space and that the idea - Designing Become a Place" is still actual.
keywords Architectural composition; virtual reality; direct design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_136
id acadia18_136
authors Austern, Guy; Capeluto, Isaac Guedi; Grobman, Yasha Jacob
year 2018
title Fabrication-Aware Design of Concrete Façade Panels. A Computational Method For Evaluating the Fabrication of Large- Scale Molds in Complex Geometries
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 136-145
doi https://doi.org/10.52842/conf.acadia.2018.136
summary This paper presents a design methodology for concrete façade panels that takes into consideration constraints related to digital fabrication machinery. A computational method for the real-time evaluation of industrial mold-making techniques, such as milling and hot wire cutting, was developed. The method rapidly evaluates the feasibility, material use, and machining time of complex geometry molds for architectural façade elements. Calculation speed is achieved by mathematically approximating CAM-machining operations. As results are obtained in nearly real time, the method can be easily incorporated into the architectural design process during its initial stages, when changes to the design are more effective.

In the paper, we describe the algorithms of the computational evaluation method. We also show how it can be used to introduce fabrication considerations into the design process by using it to rationalize several types of panels. Additionally, we demonstrate how the method can be used in complex, large-scale architectural projects to save machining time and materials by evaluating and altering the paneling subdivision.

keywords full paper, fabrication & robotics, digital fabrication, performance + simulation, geometry
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_36
id acadia18_36
authors Austin, Matthew; Matthews, Linda
year 2018
title Drawing Imprecision. The digital drawing as bits and pixels
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 36-45
doi https://doi.org/10.52842/conf.acadia.2018.036
summary This paper explores the consequences of digitizing the architectural drawing. It argues that the fundamental unit of drawing has shifted from “the line” to an interactive partnership between bits and pixels. It also reveals how the developmental focus of imaging technology has been to synthesize and imitate the line using bits and pixels, rather than to explore their innate productive value and aesthetic potential.

Referring to variations of the architectural drawing from a domestic typology, the paper uses high-precision digital tools tailored to quantitative image analysis and digital tools that sit outside the remit of architectural production, such as word processing, to present a new range of drawing techniques. By applying a series of traditional analytical procedures to the image, it reveals how these maneuvers can interrogate and dislocate any predetermined formal normalization.

The paper reveals that the interdisciplinary repurposing of precise digital toolsets therefore has explicit disciplinary consequences. These arise as a direct result of the recalibration of scale, the liberation of the bit’s representational capacity, and the pixel’s properties of color and brightness. It concludes by proposing that deliberate instances of translational imprecision are highly productive, because by liberating the fundamental qualitative properties of the fundamental digital units, these techniques shift the disciplinary agency of the architectural drawing

keywords full paper, imprecision, representation, recalibration, theory, glitch aesthetics, algorithmic design, process
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_309
id ecaade2018_309
authors Aºut, Serdar, Eigenraam, Peter and Christidi, Nikoletta
year 2018
title Re-flex: Responsive Flexible Mold for Computer Aided Intuitive Design and Materialization
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 717-726
doi https://doi.org/10.52842/conf.ecaade.2018.1.717
summary The paper presents an ongoing research about the design and a possible use of a responsive flexible mold. The mold is developed by integrating its precedents with automation and Human-Computer Interaction (HCI). The objective of the design is to provide an immersive design tool which has direct link to fabrication. It allows intuitive interaction to its user in order to help with the design and production of complex forms by supporting the designer's implicit skills with computer. The paper presents the design by illustrating the use of the hardware such as the actuators, the sensor and the projector; and by defining the workflow within the software. The paper concludes with the description of a possible use case in which the system is used to design and materialize an object in different scales.
keywords Design tools development; Digital fabrication and robotics; Human-computer interaction in design; Shape, form and geometry; Inventive Making
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_w08
id ecaade2018_w08
authors Aºut, Serdar, Gouwetor, Friso and Latka, Jerzy
year 2018
title Form-Adapt - Using Adaptable Form-work for Fabricating Double-Curved Surfaces
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 47-48
doi https://doi.org/10.52842/conf.ecaade.2018.1.047
summary This workshop will introduce the use of FlexiMold, an adaptable form-work device for fabricating double-curved surfaces; and Marionette, the parametric design tool of Vectorworks. The participants will have the opportunity to experience the entire workflow from the design to the production of a spatial object which has a complex form. The object will be composed of separate panels each of which will be designed by a participant and will be fabricated by team work.
keywords Computational Design; Computer Aided Manufacturing; Double-Curved Surfaces
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_219
id ecaade2018_219
authors Bai, Nan, Ye, Wenqia, Li, Jianan, Ding, Huichao, Pienaru, Meram-Irina and Bunschoten, Raoul
year 2018
title Customised Collaborative Urban Design - A Collective User-based Urban Information System through Gaming
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 419-428
doi https://doi.org/10.52842/conf.ecaade.2018.1.419
summary As we step into a new data-based information age, it is important to get citizens involved in the whole design process. Our research tries to build up a user-based urban information system by collecting the data of neighborhood land use preference from all the residents through gaming. The result of each individual decision will be displayed in real time using Augmented Reality technology, while the collective decision dataset will be stored, analyzed and learnt by computer, forming an optimal layout that meets the highest demand of the community. A pre-experiment has been conducted in a. an abstract virtual site and b. an existing site by collecting opinions from 122 participants, which shows that the system works well as a new method for collaborative design. This system has the potential to be applied both in realistic planning processes, as a negotiation toolkit, and in virtual urban forming, in the case of computer games or space colonization.
keywords Collaborative Design; Customization; Urban Design; Gaming; Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2018_1806
id sigradi2018_1806
authors Barbosa Cabral, Sthefane Adrielly; Alejandro Nome, Carlos; Queiroz, Natália
year 2018
title Pilot study of numerical modeling tool to evaluate the thermal performance of walls according to Brazilian standards
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 286-293
summary The paper discusses a numerical modeling tool to evaluate thermal performance of building envelope according to Brazilian NBR15.220 and NBR 15.575 standards. Contemporary integrated design processes require the development of early design stage decision support mechanisms in order to optimize building performance. The development of the proposed tool focused on early stage decisions on building envelope design and integrating tool usability in the design process. Results indicate that the proposed tool provides basis for decision making that respond to Brazilian standards previously disregarded by participants. Also indicate improved understanding on parameters that affect building envelope thermal performance.
keywords Thermal performance, Numeric modeling tool, Building envelope, Evidence Based Design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_424
id ecaade2018_424
authors Barczik, Günter
year 2018
title From Body Movement to Sculpture to Space - Employing Immersive Technologies to Design with the whole Body
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 781-788
doi https://doi.org/10.52842/conf.ecaade.2018.2.781
summary We present and discuss an experimental student design and research project that investigates how architectural design can be enhanced via immersive technologies. Specifically, by employing not a 2D interface for designers' thoughts, but a 3D interface and thereby activating the whole body instead of merely head and hands.
keywords Virtual Reality; Design Tools; Design Concepts; Design Methods
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_394348 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002