CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 619

_id ecaade2018_331
id ecaade2018_331
authors Trento, Armando and Fioravanti, Antonio
year 2018
title Contextual Capabilities Meet Human Behaviour - Round the peg and square the hole
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 613-620
doi https://doi.org/10.52842/conf.ecaade.2018.1.613
summary To improve environmental wellbeing and productivity, design innovation focuses on human's use-process, evolving individual space to flexible and specialized ones, according to the users' tasks - activity-based. BIM models supports sophisticated behaviours' simulation such as energy, acoustics, although it is not able to manage space use-processes. The present paper rather than a report of a case study or the presentation of a new methodology wants to contribute, together with previous works, in sketching a theroretical framework within which it is possible to compute the interaction between users and spaces (and vice versa). The quest is to reflect on possible paths for engineering knowledge and understanding, providing a BIM system the semantic information required to operate adaptively and achieve robust and innovative goal-directed behavior. Compared to current research on simulation systems, this research approach links Context, intended as spaces capabilities to Actor's Behavioural Knowledge including formalization of personality typologies and profiled behavioural patterns. By means of a classical problem solving metaphor, the "squared peg in a round hole" one, multiple categories for goal achievement are sketched, based on reciprocal Actors and Context behaviour adaptation.
keywords Use-process Knowledge; Behavioural Knowledge; Use Simulation; Cognitive Computing
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_258
id ecaade2018_258
authors Kim, Jingoog, Maher, Mary Lou, Gero, John and Sauda, Eric
year 2018
title Metaphor - A tool for designing the next generation of human-building interaction
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 149-158
doi https://doi.org/10.52842/conf.ecaade.2018.2.149
summary Well known metaphors play an explanatory role in human-computer interaction (HCI) and support users in understanding an unfamiliar object with references to a familiar object, for example the desktop metaphor. Metaphors can also support designers in forming and exploring new concepts during the process of designing. We present metaphors that establish user expectations and provide guidance for new design concepts while integrating interactive technology in buildings to enable human-building interaction (HBI). HBI is a research area that studies how HCI research and practice provides opportunities for interactive buildings. Interactive experiences in architecture can be characterized by three metaphorical concepts: HBI as Device (user-centered view), HBI as Robot (building-centered view), and HBI as Friend (activity centered-view). These metaphors provide a tool for architects and HBI designers to explore designs that engage occupants' existing mental models from previous HCI experiences. We expand on each metaphor using analogical reasoning to define exploratory design spaces for HBI.
keywords Human-Building Interaction; Metaphor; Human-Computer Interaction; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_208
id ecaade2018_208
authors Milovanovic, Julie, Siret, Daniel, Moreau, Guillaume and Miguet, Francis
year 2018
title Representational Ecosystems in Architectural Design Studio Critiques - Do changes in the representational ecosystem affect tutors and students behaviors during design critiques?
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 351-360
doi https://doi.org/10.52842/conf.ecaade.2018.1.351
summary Design studio critiques are key moments for students' learning and designing processes. During critiques, the representational ecosystem provides a setting for the critique to unfold. Tutors and students, while presenting and discussing students' designs, interact with each other and the representational ecosystem. In this article, a case study illustrates our method to measure the effect of a change of representational ecosystem on the critiques' activity. Our three settings include traditional desk critiques, 1/50 scale mockup critiques and immersive Virtual Reality critiques (with HYVE-3D). Each type of critique is analyzed by using video coding as well as protocol analysis.
keywords studio critiques ; representational ecosystem ; protocol analysis; pedagogic strategies; cognitive behavior
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2018_227
id ecaade2018_227
authors Chatzitsakyris, Panagiotis
year 2018
title EventMode - A new computational design tool for integrating human activity data within the architectural design workflow
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 649-656
doi https://doi.org/10.52842/conf.ecaade.2018.1.649
summary Architectural designers are currently depending on a multitude of elaborate computational tools in order to explore, manipulate and visualize the geometric form of their building projects. However, if architecture can be perceived as the manipulation of geometric form in direct relation to human activities and events that take place inside it, then it is evident that such design parameters are not sufficiently represented in the currently available modeling software. Would it be possible to introduce the human activity element in the aforementioned computational tools in a way that informs the design process and improves the final building product? This paper attempts to answer this question by introducing a new experimental design tool that enables the creation of parametric human activity envelopes within three-dimensional digital models. The novel approach is that this tool enables the parametric interaction of these components with the actual building geometry and generates novel visual and data representations of the 3D model. The goal is to improve the decision-making process of architects as well as their clients by enabling them to evaluate and iterate their designs based not only on the building's form but also on the human spatial events that take place inside it. A prototype implementation demonstrates the tool's practical application through three design examples.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_289
id ecaade2018_289
authors Sönmez, Orkun and Gönenç Sorguç, Arzu
year 2018
title Evaluating an Immersive Virtual Learning Environment for Learning How to Design in Human-Scale
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 371-378
doi https://doi.org/10.52842/conf.ecaade.2018.1.371
summary This paper presents a part of a thesis research conducted at METU. It proposes a method for evaluating the effects of an immersive virtual learning environment (IVLE) which is integrated in an architectural design/learning activity. Proposed IVLE application and design/learning activity were designed through a synthesis on constructive learning, problem-based learning, immersive technologies, and intended learning outcomes (ILOs) in learning how to design in human-scale. Immersive experience of bodily interactions and problem solving process are focused. Method of evaluation was also developed over this synthesis, and an evaluation rubric was created based on the SOLO taxonomy. According to the evaluation method, a before-and-after test was conducted within a case study involving a particular scenario of design exercise and interviews. Conclusions are based on the results of this case study.
keywords VR in architecture; immersive virtual learning environment; learning modalities; SOLO Taxonomy
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_000
id caadria2018_000
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 1
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, 578 p.
doi https://doi.org/10.52842/conf.caadria.2018.1
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2018_001
id caadria2018_001
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 2
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, 610 p.
doi https://doi.org/10.52842/conf.caadria.2018.2
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ecaade2018_120
id ecaade2018_120
authors Varinlioglu, Guzden and Turhan, Gozde Damla
year 2018
title A Comparative Study of Formal and Informal Teaching Methods in the Digital Architectural Curricula
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 409-416
doi https://doi.org/10.52842/conf.ecaade.2018.1.409
summary Design educators are rethinking design education because of the high-demand for the integration of CAD/CAM in the architectural curriculum. However, in traditional design schools with fewer digital courses and more emphasis on the studio courses, an important consideration is how these skills are introduced. With this in mind, and referring to the informal teaching setup, such as workshops and student competitions, this paper describes a study comparing two pedagogical strategies based on a workshop within the curricula and a competition as an extracurricular activity. ICMP method will be used to measure the development of participating students' abilities in analysis, synthesis, integration and critical thinking, under mentor supervision, and enable an evaluation of this approach to the integration of digital thinking, application, and informal design teaching/learning experience in architectural education.
keywords architectural curricula; informal teaching; digital fabrication; comparative study
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_398
id ecaade2022_398
authors Dzurilla, Dalibor and Achten, Henri
year 2022
title What’s Happening to Architectural Sketching? - Interviewing architects about transformation from traditional to digital architectural sketching as a communicational tool with clients
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 389–398
doi https://doi.org/10.52842/conf.ecaade.2022.1.389
summary The paper discusses 23 interviewed architects in practice about the role of traditional and digital sketching (human-computer interaction) in communication with the client. They were selected from 1995 to 2018 (the interval of graduation) from three different countries: the Czech Republic (CR), Slovakia (SR), Netherland (NR). To realize three blending areas that impact the approach to sketching: (I) Traditional hand and physical model studies (1995-2003). (II)Transition form - designing by hand and PC (2004–2017). (III) Mainly digital and remote forms of designing (2018–now). Interviews helped transform 31 “parameters of tools use” from the previous theoretical framework narrowed down into six main areas: (1) Implementation; (2)Affordability; (3)Timesaving; (4) Drawing support; (5) Representativeness; (6) Transportability. Paper discusses findings from interviewees: (A) Implementation issues are above time and price. (B) Strongly different understanding of what digital sketching is. From drawing in Google Slides by mouse to sketching in Metaverse. (C) Substantial reduction of traditional sketching (down to a total of 3% of the time) at the expense of growing responsibilities. (D) 80% of respondents do not recommend sketching in front of the client. Also, other interesting findings are further described in the discussion.
keywords Architectural Sketch, Digital Sketch, Effective Visual Communication
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac201816205
id ijac201816205
authors Faircloth,Billie; Ryan Welch, Martin Tamke, Paul Nicholas, Phil Ayres, Yulia Sinke, Brandon Cuffy and Mette Ramsgaard Thomsen
year 2018
title Multiscale modeling frameworks for architecture: Designing the unseen and invisible with phase change materials
source International Journal of Architectural Computing vol. 16 - no. 2, 104-122
summary Multiscale design and analysis models promise a robust, multimethod, multidisciplinary approach, but at present have limited application during the architectural design process. To explore the use of multiscale models in architecture, we develop a calibrated modeling and simulation platform for the design and analysis of a prototypical envelope made of phase change materials. The model is mechanistic in nature, incorporates material-scale and precinct scale-attributes, and supports the design of two- and three-dimensional phase change material geometries informed by heat transfer phenomena. Phase change material behavior, in solid and liquid states, dominates the visual and numerical evaluation of the multiscale model. Model calibration is demonstrated using real-time data gathered from the prototype. Model extensibility is demonstrated when it is used by designers to predict the behavior of alternate envelope options. Given the challenges of modeling phase change material behavior in this multiscale model, an additional multiple linear regression model is applied to data collected from the physical prototype in order to demonstrate an alternate method for predicting the melting and solidification of phase change materials.
keywords Multiscale modeling, mechanistic modeling, heat transfer modeling, phase change materials, model validation
series journal
email
last changed 2019/08/07 14:03

_id ijac201816102
id ijac201816102
authors Harmon, Brendan A.; Anna Petrasova, Vaclav Petras, Helena Mitasova and Ross Meentemeyer
year 2018
title Tangible topographic modeling for landscape architects
source International Journal of Architectural Computing vol. 16 - no. 1, 4-21
summary We present Tangible Landscape—a technology for rapidly and intuitively designing landscapes informed by geospatial modeling, analysis, and simulation. It is a tangible interface powered by a geographic information system that gives three- dimensional spatial data an interactive, physical form so that users can naturally sense and shape it. Tangible Landscape couples a physical and a digital model of a landscape through a real-time cycle of physical manipulation, three-dimensional scanning, spatial computation, and projected feedback. Natural three-dimensional sketching and real-time analytical feedback should aid landscape architects in the design of high performance landscapes that account for physical and ecological processes. We conducted a series of studies to assess the effectiveness of tangible modeling for landscape architects. Landscape architecture students, academics, and professionals were given a series of fundamental landscape design tasks—topographic modeling, cut-and-fill analysis, and water flow modeling. We assessed their performance using qualitative and quantitative methods including interviews, raster statistics, morphometric analyses, and geospatial simulation. With tangible modeling, participants built more accurate models that better represented morphological features than they did with either digital or analog hand modeling. When tangibly modeling, they worked in a rapid, iterative process informed by real-time geospatial analytics and simulations. With the aid of real-time simulations, they were able to quickly understand and then manipulate how complex topography controls the flow of water.
keywords Human–computer interaction, tangible interfaces, tangible interaction, landscape architecture, performance, geospatial modeling, topographic modeling, hydrological modeling
series journal
email
last changed 2019/08/07 14:03

_id acadia18_156
id acadia18_156
authors Huang, Weixin; Zheng, Hao
year 2018
title Architectural Drawings Recognition and Generation through Machine Learning
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 156-165
doi https://doi.org/10.52842/conf.acadia.2018.156
summary With the development of information technology, the ideas of programming and mass calculation were introduced into the design field, resulting in the growth of computer- aided design. With the idea of designing by data, we began to manipulate data directly, and interpret data through design works. Machine Learning as a decision making tool has been widely used in many fields. It can be used to analyze large amounts of data and predict future changes. Generative Adversarial Network (GAN) is a model framework in machine learning. It’s specially designed to learn and generate output data with similar or identical characteristics. Pix2pixHD is a modified version of GAN that learns image data in pairs and generates new images based on the input. The author applied pix2pixHD in recognizing and generating architectural drawings, marking rooms with different colors and then generating apartment plans through two convolutional neural networks. Next, in order to understand how these networks work, the author analyzed their framework, and provided an explanation of the three working principles of the networks, convolution layer, residual network layer and deconvolution layer. Lastly, in order to visualize the networks in architectural drawings, the author derived data from different layer and different training epochs, and visualized the findings as gray scale images. It was found that the features of the architectural plan drawings have been gradually learned and stored as parameters in the networks. As the networks get deeper and the training epoch increases, the features in the graph become more concise and clearer. This phenomenon may be inspiring in understanding the designing behavior of humans.
keywords full paper, design study, generative design, ai + machine learning, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id caadria2018_190
id caadria2018_190
authors Lee, Ju Hyun, Gu, Ning, Taylor, Mark and Ostwald, Michael
year 2018
title Rethinking and Designing the Key Behaviours of Architectural Responsiveness in the Digital Age
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 359-368
doi https://doi.org/10.52842/conf.caadria.2018.1.359
summary In the late 1960s the architect Nicholas Negroponte introduced that the physical environment could exhibit reflexive and simulated behaviours, an idea that has since been widely explored. Despite of this wider interest, there is not, however, a systematic approach to understanding architectural responsiveness in the digital age. This paper aims to provide a formal way to facilitate designing smart and interactive artificiality in the built environment. This paper presents a conceptual framework, through exploratory studies on recent architecture, highlighting four key behaviours: (1) tangible interaction, (2) embodied response, (3) ambient simulation, and (4) mixed reality. In addition, two essential enablers, collectiveness and immersion, are proposed to enhance these key behaviours. This framework can be used as a tool to systematically identify and characterise the responsiveness of "responsive architecture". The creative mixtures of the key behaviours will contribute to the development of unique responsive environments.
keywords Responsive architecture; Responsive behaviour; Interactive art; Negroponte
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_123
id ecaade2018_123
authors Loos, Lennert and De Laet, Lars
year 2018
title A Structurally Informed Design Process by Real-time Data Visualisations
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 687-696
doi https://doi.org/10.52842/conf.ecaade.2018.1.687
summary This paper will discuss data visualisation in structural engineering for comparing design alternatives. By having the structural information of all different design proposals at hand, the designer is able to make informed design decisions. The authors developed a tool for creating interactive graphs while designing structures in a parametric design environment. In this work a case study of different structural design alternatives of a stadium roof is presented. Based on this design case, some graphs and the new informed design approach will be explained. Also the implementation of the tool within a parametric design environment with its advantages and issues is discussed.
keywords Data visualisation; Computer-aided design; Decision making; Structural design
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_324
id caadria2018_324
authors Mansoori, Maryam, Kalantar, Negar, Creasy, Terry and Rybkowski, Zofia
year 2018
title Toward Adaptive Architectural Skins - Designing Temperature-Responsive Curvilinear Surfaces
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 329-338
doi https://doi.org/10.52842/conf.caadria.2018.2.329
summary This research investigated the possibility of creating adaptable and precise curvilinear surfaces through the deformation of flat wooden surfaces. A prototype design system was developed to accomplish this task. The goal was to take a commonly-used architectural material, which is valued for its environmental sustainability and its aesthetic qualities, and to re-conceptualize it for use in cutting-edge adaptive digital designs. We therefore sought to develop a way to create wooden surfaces that could predictably transform in response to environmental stimuli. We successfully developed and tested the reversible deformation of a wooden surface by laminating a shape-memory polymer onto a kerfed wooden plane. The composite obtains its responsiveness from the shape-memory polymer, and its curvature direction and structural stability from the kerfed wood. The composite is able to deform to a defined curvilinear surface when heated to 40-60 degrees Celsius, and then self-transform back to the original flat surface when cooled. In addition to demonstrating kinetic behavior for a wood-based composite, the prototype offers a practical technique that can be used by designers to create flexible, inexpensive fabrication and packaging strategies.
keywords Environmental-Responsive Architecture; Shape Memory Polymer; Wood Fabrication; Continuous Curvilinear Surfaces
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2018_1364
id sigradi2018_1364
authors Nunes de Vasconcelos, Guilherme; de Sousa Van Stralen, Mateus; Menezes, Alexandre; Gontijo Ramos, Fernando Murilo
year 2018
title Perceive to learn to perceive: an experience with virtual reality devices for architecture design learning
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 985-990
summary This work investigates the potential use of low-cost virtual reality (VR) devices in architectural education to improve spatial perception of undergraduate architecture students. The experiment involved a gradual approach into the design process, starting with an intervention on a physical space, its bidimensional representation, 3d modelling and immersion in VR. After the immersion, students answered a questionnaire with open and closed-questions about their experience, and their evaluation of the use of VR in the designing. The findings point to the use of VR as a means to explore, perceive and reflect on decisions, allowing students a better understanding of designing.
keywords Virtual reality; Architectural design; Architecture teaching; Representation; Low-cost devices
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2018_097
id caadria2018_097
authors Park, Daekwon
year 2018
title Adaptive THERM-SKIN - Tunable Cellular Materials for Adaptive Thermal Control
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 309-318
doi https://doi.org/10.52842/conf.caadria.2018.2.309
summary This research investigates a tunable cellular material system that can alternate between a thermal insulator and a heat exchanger. The capability to morph between these two distinctive thermal functions provide opportunities to create novel material systems that can dynamically adapt to its environment. The operating principle is to strategically deform the cellular material so that the shape and size of the cavities are optimized for the intended thermal function. In the compressed state, the cavity spaces are narrow enough to suppress convection heat transfer and utilize the low thermal conductivity property of still air. The expanded state has the optimum cavity dimensions for air to move through the system and exchange heat with the material system. The first stage of the research utilizes the existing thermal optimization studies for establishing the analytical model for predicting the performance of each state as a function of the geometric features. The second stage constructs a parametric model using the predictions, and two separate material architectures were designed and fabricated based on it. The calibrated analytical model can be utilized in designing various dynamic thermal interaction systems at a wide range of conditions and parameters (e.g., climate, temperature, scale, and material).
keywords Dynamic Thermal Insulation; Cellular Materials; Thermal Design and Optimization; Adaptive Materials
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac202018202
id ijac202018202
authors Pasquero, Claudia and Marco Poletto
year 2020
title Bio-digital aesthetics as value system of post-Anthropocene architecture
source International Journal of Architectural Computing vol. 18 - no. 2, 120-140
summary It is timely within the Anthropocene era, more than ever before, to search for a non-anthropocentric mode of reasoning, and consequently designing. The PhotoSynthetica Consortium, established in 2018 and including London-based ecoLogicStudio, the Urban Morphogenesis Lab (Bartlett School of Architecture, University College London) and the Synthetic Landscape Lab (University of Innsbruck, Austria), has therefore been pursuing architecture as a research-based practice, exploring the interdependence of digital and biological intelligence in design by working directly with non-human living organisms. The research focuses on the diagrammatic capacity of these organisms in the process of growing and becoming part of complex bio-digital architectures. A key remit is training architects’ sensibility at recognising patterns of reasoning across disciplines, materialities and technological regimes, thus expanding the practice’s repertoire of aesthetic qualities. Recent developments in evolutionary psychology demonstrate that the human sense of beauty and pleasure is part of a co-evolutionary system of mind and surrounding environment. In these terms, human senses of beauty and pleasure have evolved as selection mechanisms. Cultivating and enhancing them compensate and integrate the functions of logical thinking to gain a systemic view on the planet Earth and the dramatic changes it is currently undergoing. This article seeks to illustrate, through a series of recent research projects, how a renewed appreciation of beauty in architecture has evolved into an operational tool to design and measure its actual ecological intelligence.
keywords Bio-digital, bio-computation, bio-city, effectiveness, empathy, impact, sensing
series journal
email
last changed 2020/11/02 13:34

_id acadia18_350
id acadia18_350
authors Seibold, Zach; Hinz, Kevin; García del Castillo y López, Jose Luis; Martínez Alonso, Nono; Mhatre, Saurabh; Bechthold, Martin
year 2018
title Ceramic Morphologies. Precision and control in paste-based additive manufacturing
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 350-357
doi https://doi.org/10.52842/conf.acadia.2018.350
summary Additive manufacturing techniques (AMT), commonly referred to as 3D printing, are emerging as a new area of study for the production of ceramic elements at the architectural scale. AMT may allow architectural designers to break from the established means of designing with ceramic elements – a process where designs are typically confined to a limited selection of building components produced by machine, die or fixture. In this paper, we report a method for the design and additive manufacture of customizable ceramic masonry elements via paste-based extrusion. A novel digital workflow allowed for precise control of part design, and generated manufacturing parameters such as toolpath geometry and machine code. 3D scans of a selection of elements provide an initial analysis of print fidelity. We discuss the current constraints of this process and identify several on-going research trajectories generated because of this research.
keywords work in progress, fabrication & robotics, materials/adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_448899 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002