CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2018_247
id ecaade2018_247
authors Ilunga, Guilherme and Leit?o, António
year 2018
title Derivative-free Methods for Structural Optimization
doi https://doi.org/10.52842/conf.ecaade.2018.1.179
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 179-186
summary The focus on efficiency has grown over recent years, and nowadays it is critical that buildings have a good performance regarding different criteria. This need prompts the usage of algorithmic approaches, analysis tools, and optimization algorithms, to find the best performing variation of a design. There are many optimization algorithms and not all of them are adequate for a specific problem. However, Genetic Algorithms are frequently the first and only option, despite being considered last resort algorithms in the mathematical field. This paper discusses methods for structural optimization and applies them on a structural problem. Our tests show that Genetic Algorithms perform poorly, while other algorithms achieve better results. However, they also show that no algorithm is consistently better than the others, which suggests that for structural optimization, several algorithms should be used, instead of simply using Genetic Algorithms.
keywords Derivative-free Optimization; Black-box Optimization; Structural Optimization; Algorithmic Design
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1631
id sigradi2018_1631
authors Godoi da Cruz, Renato; Arcipreste, Cláudia Maria; Lemieszek Pinheiro, Rafael; de Jesus Ribas, Rovadávia Aline
year 2018
title Generative design in the design development of metallic constructions
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 211-218
summary The present article describes the construction of a system that combines parametric modeling strategies and genetic algorithms for optimization. By means of the reformulation of the Darwinian evolutionary process, it is sought to systematize a project process that allows the architect to act in the parameterization of the problems, beyond the mere formal proposition of solutions, in favor of the exploration of a greater variety of projective possibilities than would be possible using traditional design methods.
keywords Generative design; Evolutionary algorithms; Structural analysis; Environmental analysis and Metallic construction
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2018_394
id ecaade2018_394
authors Rubinowicz, Pawe³
year 2018
title Application of Available Digital Resources for City Visualisation and Urban Analysis
doi https://doi.org/10.52842/conf.ecaade.2018.2.595
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 595-602
summary The article presents two methods for generating 3D city models. The methods are based on LiDAR and GIS-2D data. The first one enables to create automatically simplified city models that include buildings in the LoD1 standard (excluding roof geometry). The second one provides for generating precise 3D city models including all components of the city space, such as buildings, tall green, city infrastructure. This involves direct transformation of DSM (Digital Surface Model) data as mesh-3D. The analyses presented are based on data available in Poland (in particular GIS). The results of the study can be easily applied for analysing other cities in Europe and elsewhere in the world. The article presents possibilities of using such models to urban analyses. The methods and figures included in the article have been developed using C++ software developed by the author.
keywords airborne LiDAR scanning; Digital Surface Model; BDOT 10k; city visualization; digital urban analysis; urban design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_170
id ecaade2018_170
authors Shahsavari, Fatemeh, Koosha, Rasool, Vahid, Milad R., Yan, Wei and Clayton, Mark
year 2018
title Towards the Application of Uncertainty Analysis in Architectural Design Decision-Making - A Probabilistic Model and Applications
doi https://doi.org/10.52842/conf.ecaade.2018.1.295
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 295-304
summary To this day, proper handling of uncertainties -including unknown variables in primary stages of a design, an actual climate data, occupants' behavior, and degradation of material properties over the time- remains as a primary challenge in an architectural design decision-making process. For many years, conventional methods based on the architects' intuition have been used as a standard approach dealing with uncertainties and estimating the resulting errors. However, with buildings reaching great complexity in both their design and material selections, conventional approaches come short to account for ever-existing but unpredictable uncertainties and prove incapable of meeting the growing demand for precise and reliable predictions. This study aims to develop a probability-based framework and associated prototypes to employ uncertainty analysis and sensitivity analysis in architectural design decision-making. The current research explores an advanced physical model for thermal energy exchange characteristics of a hypothetical building and uses it as a test case to demonstrate the proposed probability-based analysis framework. The proposed framework provides a means to employ uncertainty and sensitivity analysis to improve reliability and effectiveness in a buildings design decision-making process.
keywords Probability-based design decision; uncertainty analysis; sensitivity analysis; building energy consumption model
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
doi https://doi.org/10.52842/conf.acadia.2018.434
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2018_287
id caadria2018_287
authors Herr, Christiane M., Lombardi, Davide and Galobardes, Isaac
year 2018
title Parametric Design of Sculptural Fibre Reinforced Concrete Facade Components
doi https://doi.org/10.52842/conf.caadria.2018.2.319
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 319-328
summary This paper presents the first stage of a study examining the digital design and fabrication of a parametrically defined sculptural concrete façade element employing fibre reinforced concrete. On the background of a literature review of related precedent studies, the paper extends the scope of previous studies by offering a detailed insight into the process of integrating architectural considerations with material properties of fibre reinforced concrete, detailed structural analysis and construction constraints. The paper offers technical details with a focus on material to similar on-going studies.
keywords parametric design; digital fabrication; digital prototyping; fibre reinforced concrete; prefabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2018_1473
id sigradi2018_1473
authors Kimi Cogima, Camila; V. V. de Paiva, Pedro; Dezen-Kempter, Eloisa; G. De Carvalho, Marco Antonio
year 2018
title Digital scanning and BIM modeling for modern architecture preservation: the Oscar Niemeyer’s Church of Saint Francis of Assisi
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 457-462
summary The Building Information Modelling (BIM) technology enabled improvement in the design, construction and maintenance stages highly. In the field of existing buildings, including historical assets, this technology has not yet had the same impact. This paper presents a methodology to create an intelligent digital model for an outstanding building from modern architecture in Brazil using multiple reality-based technologies. The fusion of the different point cloud raw data generated a high-resolution Dense Surface Model (DSM), the base of an accurate and detailed parametric Model. This study demonstrated the potential of digital surveying, including low-cost sensors, and BIM for built heritage documentation.
keywords Reality-based surveying; Point cloud; As-is model; Building Information Modelling; Modern Heritage
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_189
id ecaade2018_189
authors Zardo, Paola, Quadrado Mussi, Andréa and Lima da Silva, Juliano
year 2018
title The Role of Digital Technologies in Promoting Contemporary and Collaborative Design Processes
doi https://doi.org/10.52842/conf.ecaade.2018.1.469
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 469-478
summary Digital technologies and contemporary CAAD systems are increasingly being adopted in architectural practice. Thus, their impacts on buildings design process need to be addressed and explored, as there are signs of a potential revolution in AEC industry. This paper presents a methodology and preliminary results of a work-in-progress for a Master of Science dissertation. The main purpose of the study is to find similarities in practice in order to determine main characteristics and fundamentals of contemporary design process. It consists of a design praxiology approach according to Cross' taxonomy of design research. Three project cases developed by digital processes and explored by secondary data from literature reviews, complemented by documentary research, are presented as preliminary results, as well as their main similarities. Through the analysis of the cases, it was verified that the presence of BIM, parametric modeling and digital fabrication overlaps and promotes holistic and largely collaborative design processes. The role of collaboration is highlighted, which was presented as a key factor for the success of the projects. Future results from the described methodology should allow a more detailed and in-depth characterization of the contemporary design process.
keywords digital technologies; contemporary design process; design praxiology
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_000
id ecaade2018_000
authors Kepczynska-Walczak, A, Bialkowski, S (eds.)
year 2018
title Computing for a better tomorrow, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2018.1
source Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, 858 p.
summary The theme of the 36th eCAADe Conference is Computing for a better tomorrow. When we consider the aims of research activities, design efforts and mastering towards ideal solutions in the area of digital technologies in the built environment, such as CAD, CAM, CAE, BIM, FM, GIS, VR, AR and others, we may realise the actual reason for that is to make life better, healthier, prettier, happier, more sustainable and smarter. The usefulness of undertaken studies might be tested and proved by the noticeable shared approach of putting humans and their environments in a central position: man and the environment, nature and design, art and technology... Natural disasters and climate change, crime and terrorism, disabilities and society ageing - architects, designers and scientists active in the built environment domain are not able to eliminate all the risk, dangers and problems of contemporary world. On the other hand, they have social and moral responsibilities to address human needs and take up this multifaceted challenge. It involves a co-operation and, moreover, an interdisciplinary and user-oriented approach. The complexity of raised problems should not discourage us, on the contrary, it should stimulate activities towards living up to human dreams of a better and sustainable tomorrow. This calls for a revision of methods and tools applied in research, teaching and practice. Where are we? What are the milestones and roadmaps at the end of the second decade of the 21st century? Do we really take the most of the abundance of accumulated knowledge? Or we skip to explore another undiscovered domains? We invited academicians, researchers, professionals and students from all over the world to address the multifaceted notions of using computing in architectural and related domains for developing a better tomorrow. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. In order to specifically address some of the questions above, we defined subthemes and organised specific sessions around these subthemes, during the conference as well as in the proceedings.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2018_001
id ecaade2018_001
authors Kepczynska-Walczak, A, Bialkowski, S (eds.)
year 2018
title Computing for a better tomorrow, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2018.2
source Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, 860 p.
summary The theme of the 36th eCAADe Conference is Computing for a better tomorrow. When we consider the aims of research activities, design efforts and mastering towards ideal solutions in the area of digital technologies in the built environment, such as CAD, CAM, CAE, BIM, FM, GIS, VR, AR and others, we may realise the actual reason for that is to make life better, healthier, prettier, happier, more sustainable and smarter. The usefulness of undertaken studies might be tested and proved by the noticeable shared approach of putting humans and their environments in a central position: man and the environment, nature and design, art and technology... Natural disasters and climate change, crime and terrorism, disabilities and society ageing - architects, designers and scientists active in the built environment domain are not able to eliminate all the risk, dangers and problems of contemporary world. On the other hand, they have social and moral responsibilities to address human needs and take up this multifaceted challenge. It involves a co-operation and, moreover, an interdisciplinary and user-oriented approach. The complexity of raised problems should not discourage us, on the contrary, it should stimulate activities towards living up to human dreams of a better and sustainable tomorrow. This calls for a revision of methods and tools applied in research, teaching and practice. Where are we? What are the milestones and roadmaps at the end of the second decade of the 21st century? Do we really take the most of the abundance of accumulated knowledge? Or we skip to explore another undiscovered domains? We invited academicians, researchers, professionals and students from all over the world to address the multifaceted notions of using computing in architectural and related domains for developing a better tomorrow. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. In order to specifically address some of the questions above, we defined subthemes and organised specific sessions around these subthemes, during the conference as well as in the proceedings.
series eCAADe
last changed 2022/06/07 07:49

_id sigradi2018_1870
id sigradi2018_1870
authors Rendón Sallard, Mario Yadir; Cornejo Vucovich, Elsa Concepción
year 2018
title Techno-political strategies and tools to increase interdisciplinary collaboration and community participation around public health policy and the built environment
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1355-1360
summary In order to impact individual behaviors that contribute to risk factors for chronic disease, a multi-disciplinary and inter-institutional working group was established to foster creative ways to increase community participation in public policymaking using the socio-ecological model as a point of reference and community-based participatory research methods to define priority issues and strategies, including techno-political tools such as the creation of a public information repository, community mapping, educational and awareness campaigns, and the use of social media to engage with policymakers.
keywords Built environment; Health promotion; Chronic disease prevention; Community participation
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2018_370
id ecaade2018_370
authors Abdelmohsen, Sherif, Massoud, Passaint, El-Dabaa, Rana, Ibrahim, Aly and Mokbel, Tasbeh
year 2018
title A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2018.2.253
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 253-262
summary Low-cost programmable materials such as wood have been utilized to replace mechanical actuators of adaptive architectural skins. Although research investigated ways to understand the hygroscopic response of wood to variations in humidity levels, there are still no clear methods developed to track and analyze such response. This paper introduces a computational method to analyze, track and store the hygroscopic response of wood through image analysis and continuous tracking of angular measurements in relation to time. This is done through a computational closed loop that links the smart material interface (SMI) representing hygroscopic response with a digital and tangible interface comprising a Flex sensor, Arduino kit, and FireFly plugin. Results show no significant difference between the proposed sensing mechanism and conventional image analysis tracking systems. Using the described method, acquiring real-time data can be utilized to develop learning mechanisms and predict the controlled motion of programmable material for adaptive architectural skins.
keywords Hygroscopic properties of wood; Adaptive architecture; Programmable materials; Real-time tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201816103
id ijac201816103
authors Alani, Mostafa W.
year 2018
title Algorithmic investigation of the actual and virtual design space of historic hexagonal-based Islamic patterns
source International Journal of Architectural Computing vol. 16 - no. 1, 34-57
summary This research challenges the long-standing paradigm that considers compositional analysis to be the key to researching historical Islamic geometric patterns. Adopting a mathematical description shows that the historical focus on existing forms has left the relevant structural similarities between historical Islamic geometric patterns understudied. The research focused on the hexagonal-based Islamic geometric patterns and found that historical designs correlate to each other beyond just the formal dimension and that deep, morphological connections exist in the structures of historical singularities. Using historical evidence, this article identifies these connections and presents a categorization system that groups designs together based on their “morphogenetic” characteristics.
keywords Islamic geometric patterns, morphology, computations, digital design, algorithmic thinking
series journal
email
last changed 2019/08/07 14:03

_id caadria2018_033
id caadria2018_033
authors Bai, Nan and Huang, Weixin
year 2018
title Quantitative Analysis on Architects Using Culturomics - Pattern Study of Prizker Winners Based on Google N-gram Data
doi https://doi.org/10.52842/conf.caadria.2018.2.257
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 257-266
summary Quantitative studies using the corpus Google Ngram, namely Culturomics, have been analyzing the implicit patterns of culture changes. Being the top-standard prize in the field of Architecture since 1979, the Pritzker Prize has been increasingly diversified in the recent years. This study intends to reveal the implicit pattern of Pritzker Winners using the method of Culturomics, based on the corpus of Google Ngram to reveal the relationship of the sign of their fame and the fact of prize-winning. 48 architects including 32 awarded and 16 promising are analyzed in the printed corpus of English language between 1900 and 2008. Multiple regression models and multiple imputation methods are used during the data processing. Self-Organizing Map is used to define clusters among the awarded and promising architects. Six main clusters are detected, forming a 3×2 network of fame patterns. Most promising architects can be told from the clustering, according to their similarity to the more typical prize winners. The method of Culturomics could expand the sight of architecture study, giving more possibilities to reveal the implicit patterns of the existing empirical world.
keywords Culturomics; Google Ngram; Pritzker Prize; Fame Pattern; Self-Organizing Map
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_296
id ecaade2018_296
authors Czyñska, Klara
year 2018
title High Precision Visibility and Dominance Analysis of Tall Building in Cityscape - On a basis of Digital Surface Model
doi https://doi.org/10.52842/conf.ecaade.2018.1.481
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 481-488
summary The article presents a methodology applied for the assessment of the tall building visual impact on the city scape, using digital tools. The method has been used by the author in the planning practice in several cities in Poland. It enables to determine not only the visibility range of a planned tall building in the city spaces, but also the extent to which it dominates. Findings are presented in a map which reflects both parameters applicable to a given facility. Computation of findings is based on the model of a city consisting of a regular cloud of points (Digital Surface Model) of high quality and dedicated C++ software (developed in cooperation with author). The Visual Impact Size (VIS) method supports the process of conservation and landscaping, in particular in historical cities. It helps predicting spatial implications tall buildings may have. It may also be used for comprehensive development of a modern skyline with tall buildings as a harmonious component of the cityscape. The method is presented using the case study of the Hanza Tower building in Szczecin (Poland).
keywords digital cityscape analysis; tall buildings; visual impact; Visual Impact Size method; viewshed; Hanza Tower in Szczecin
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2018_1879
id sigradi2018_1879
authors Danesh Zand, Foroozan; Baghi, Ali; Kalantari, Saleh
year 2018
title Digitally Fabricating Expandable Steel Structures Using Kirigami Patterns
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 724-731
summary This article presents a computational approach to generating architectural forms for large spanning structures based on a “paper-cutting” technique. In this traditional artform, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. To make these types of expandable structures feasible at an architectural scale, four challenges had to be met during the research. The first was to map the kinetic properties of a paper-cut model, investigating formative parameters such as the width and frequency of cuts to determine how they affect the resulting structure. The second challenge was to computationally simulate the paper-cut structure in an accurate fashion. We accomplished this task using finite element analysis in the Ansys software platform. The third challenge was to create a prediction model that could precisely forecast the characteristics of a paper-cutting pattern. We made significant strides in this demanding task by using a data-mining approach and regression analysis through 400 simulations of various cutting patterns. The final challenge was to verify the efficiency and accuracy of our prediction model, which we accomplished through a series of physical prototypes. Our resulting computational paper-cutting system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach.
keywords Transformable Paper-cut; Design method; Prediction Model; Regression analysis; Physical prototype
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_255
id ecaade2018_255
authors Danesh, Foroozan, Baghi, Ali and Kalantari, Saleh
year 2018
title Programmable Paper Cutting - A Method to Digitally Fabricate Transformable, Complex Structural Geometry
doi https://doi.org/10.52842/conf.ecaade.2018.2.489
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 489-498
summary This paper presents a computational approach to generating architectural forms for large spanning structures based on a "paper-cutting" technique. Using this approach, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. Our computational system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach. To develop the model, we analyzed paper-cutting techniques, extracted the relevant formative parameters, and created a simulation using finite element analysis. We then used a data-mining approach through 400 simulations and applied a regression analysis to create a prediction model. Given a small number of input variables from the designer, this model can rapidly and precisely predict the transformation volume of a paper-cutting pattern. Additional structural characteristics will be modelled in future work. The use of this tool makes paper-cut design approaches more practical by changing a non-systematic, labor-intensive design process into a more precise and efficient one.
keywords Paper-cut?; Transformable geometry; Design method; Model prediction; Data mining; Regression analysis
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_527809 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002