CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2018_402
id ecaade2018_402
authors Ron, Gili, Shallaby, Sara and Antonako, Theofano
year 2018
title On-Site Fabrication and Assembly for Arid Region Settlements
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 801-810
doi https://doi.org/10.52842/conf.ecaade.2018.1.801
summary With fast growing population rates and the further desertification of the global climate, desert regions, covering one fifth of the world's surface, provide an opportunity for future habitats. However, their extreme climatic conditions and remoteness pose a planning challenge, currently addressed with prefabrication and layered design; wasteful and costly solutions. This article proposes a bespoke design, fabrication and assembly process: performed in-situ with using local resources and novel automation. The research addresses challenges in on-site robotic forming and assembly of mono-material discrete elements, made in waterless concrete of sand-Sulphur composite. The formed components are examined in formwork-free assembly of wall and arch, with Pick & Place tool-path. The component's design incorporates topological and osteomorphic interlocking, facilitating structural integrity, as well as self-shading and passive cooling, to fit with local climate. This work culminates in a design proposal for constructing desert habitats, climatically adapted for Zagora oasis in the Moroccan Sahara: a remote site of hyper-arid climate.
keywords Material System; Vernacular Architecture; Digital Morphogenesis; Topological Interlocking; Robotic Fabrication; Robotic Assembly
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_189
id ecaade2018_189
authors Zardo, Paola, Quadrado Mussi, Andréa and Lima da Silva, Juliano
year 2018
title The Role of Digital Technologies in Promoting Contemporary and Collaborative Design Processes
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 469-478
doi https://doi.org/10.52842/conf.ecaade.2018.1.469
summary Digital technologies and contemporary CAAD systems are increasingly being adopted in architectural practice. Thus, their impacts on buildings design process need to be addressed and explored, as there are signs of a potential revolution in AEC industry. This paper presents a methodology and preliminary results of a work-in-progress for a Master of Science dissertation. The main purpose of the study is to find similarities in practice in order to determine main characteristics and fundamentals of contemporary design process. It consists of a design praxiology approach according to Cross' taxonomy of design research. Three project cases developed by digital processes and explored by secondary data from literature reviews, complemented by documentary research, are presented as preliminary results, as well as their main similarities. Through the analysis of the cases, it was verified that the presence of BIM, parametric modeling and digital fabrication overlaps and promotes holistic and largely collaborative design processes. The role of collaboration is highlighted, which was presented as a key factor for the success of the projects. Future results from the described methodology should allow a more detailed and in-depth characterization of the contemporary design process.
keywords digital technologies; contemporary design process; design praxiology
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
doi https://doi.org/10.52842/conf.acadia.2018.312
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_244
id acadia18_244
authors Belanger, Zackery; McGee, Wes; Newell, Catie
year 2018
title Slumped Glass: Auxetics and Acoustics
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 244-249
doi https://doi.org/10.52842/conf.acadia.2018.244
summary This research investigates the effect of curvature, at a variety of scales, on the acoustic properties of glass. Plate glass, which has predictable and uniform acoustically reflective behavior, can be formed into curved surfaces through a combination of parametrically-driven auxetic pattern generation, CNC water-jet cutting, and controlled heat forming. When curved, plate glass becomes “activated” and complex acoustically-diffusive behavior emerges. The parametrically-driven auxetic perforation pattern allows the curvature to be altered and controlled across a formed pane of glass, and a correlation is demonstrated between the level of curvature and the extent of acoustically diffusive behavior. Beyond individual panels, curved panes can be aggregated to extend acoustic influence to the entire interior room condition, and the pace at which acoustic energy is distributed can be controlled. In this work the parameters surrounding the controlled slumping of glass are described, and room-sized formal and acoustic effects are studied using wave-based acoustic simulation techniques. This paper discusses the early stages of work in progress.
keywords work in progress, materials and adaptive systems, performance and simulation, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2018_156
id caadria2018_156
authors Chee, Ryan Wei Shen, Tan, Wei Lin, Goh, Wei Hern, Amtsberg, Felix and Dritsas, Stylianos
year 2018
title Locally Differentiated Concrete by Digitally Controlled Injection
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 195-204
doi https://doi.org/10.52842/conf.caadria.2018.1.195
summary This paper presents a digital fabrication process for concrete which may be deployed for surface texturing, volumetric modification of material properties and 2D and 3D forming. We process concrete in its slurry state by locally injecting chemicals in solution which cause vigorous effervescent reaction to take place. By precise and controlled dispensing, using computer software and robotic hardware developed, we produce local differentiation in the finally set concrete artefacts. Our work contributes to additive and subtractive 3D manufacturing as well as functionally graded materials fabrication.
keywords Digital Fabrication; Additive Manufacturing; Functionally Graded Materials; Architectural Robotics.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia18_386
id acadia18_386
authors Chen, Canhui; Burry, Jane
year 2018
title (Re)calibrating Construction Simplicity and Design Complexity
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 386-393
doi https://doi.org/10.52842/conf.acadia.2018.386
summary Construction simplicity is crucial to cost control, however design complexity is often necessary in order to meet particular spatial performance criteria. This paper presents a case study of a semi-enclosed meeting pod that has a brief that must contend with the seemingly contradictory conditions of the necessary geometric complexities imperative to improved acoustic performance and cost control in construction. A series of deep oculi are introduced as architectural elements to link the pod interior to the outside environment. Their reveals also introduce sound reflection and scattering, which contribute to the main acoustic goal of improved speech privacy. Represented as a three-dimensional funnel like shape, the reveal to each opening is unique in size, depth and angle. Traditionally, the manufacturing of such bespoke architectural elements in many cases resulted in lengthy and costly manufacturing processes. This paper investigates how the complex oculi shape variations can be manufactured using one universal mold. A workflow using mathematical and computational operations, a standardized fabrication approach and customization through tooling results in a high precision digital process to create particular calculated geometries, recalibrated at each stage to account for the paradoxical inexactitudes and inevitable tolerances.
keywords work in progress,tolerance, developable surface, form finding, construction simplicity, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
doi https://doi.org/10.52842/conf.acadia.2018.404
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2018.2.545
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2018_1744
id sigradi2018_1744
authors de Toledo e Gazel, Jorge Lira; Carmo Pena Martinez, Andressa; dos Santos, Denise Mônaco; Lopes de Souza, Douglas
year 2018
title 2 BITS: A case of mass customization for social housing
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 353-358
summary This work presents a design for mass customization of modular housing applied to the Brazilian case, through modeling in grasshopper. These parametric tools contribute to an increase in the flexibility of the decisions and allow the execution, generating a wide range of solutions for the same problem. As a case study, it was considered the environmental disaster which occurred in the city of Mariana, whose homeless population remains displaced. Although in the initial phase of studies, this modular housing model aims to discuss principles of variability, flexibility, and pre-fabrication, delegating more decisions to end-users of large-scale social housing.
keywords mass customization; parametric design; social housing
series SIGRADI
email
last changed 2021/03/28 19:58

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
doi https://doi.org/10.52842/conf.acadia.2018.336
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_182
id ecaade2018_182
authors Ghandi, Mona
year 2018
title Designing Affordable, Portable, and Flexible Shelter for the Homeless and the Refugees
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 307-316
doi https://doi.org/10.52842/conf.ecaade.2018.1.307
summary Advances in computational algorithmic design, material science, and fabrication technology have exposed architects to new opportunities in design and enabled them to address contemporary needs of cities and citizens. The far-reaching applications of this technology have provided students with a bewildering array of new tools for their design exploration. Among many of the socio-economic and political challenges facing today's world, homelessness and refugee crisis are the most critical. "Shape Your Shelter" design-build studio aimed to create a portable and transformable shelter using emergent technologies. This paper reviews some of the central concepts of such an endeavor and the role of computational design, digital fabrication, and material behavior as a medium of architectural design education and social services. It describes how these concepts can be used in a pedagogical framework to encourage student Innovation and increase students' engagement in new technological resources as they address critical contemporary and future social issues.
keywords Transformable Structures; Portable Architecture; Collaborative and Participative Design; Homeless / Refugee Shelter; CAAD Education; Social Architecture
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2018_010
id caadria2018_010
authors Han, Lu and Cardoso Llach, Daniel
year 2018
title Ludi: A Concurrent Physical and Digital Modeling Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-523
doi https://doi.org/10.52842/conf.caadria.2018.1.515
summary This paper explores the potential of a concurrent physical and digital modeling environment. We describe a prototype for a novel design modeling interface where users can take advantage of the affordances of both physical and digital modeling environments, and work back and forth between the two. Using Processing, along with the Kinect depth sensor, the system uses depth data read from a physical modeling space to produce an enhanced digital representation in real time. Users can design by moving and stacking wooden blocks in a physical space, which is represented (and enhanced) digitally as a "voxel space," which can in turn be edited digitally. The result is a proof-of-concept concurrent physical and digital modeling environment combining design affordances specific to each media: the physical space offers tactile and embodied forms of design inter-action, and the digital space offers parametric editing capabilities, along with the capacity to view the modeling space from different perspectives, and perform basic analyses on designs. Following a brief review of experimental computational and tangible interaction design interfaces, the paper discusses the system's implementation, its limitations, and future steps.
keywords Computational Design; Processing; Concurrent Modeling Environment; Tangible Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_276
id caadria2018_276
authors Hannouch, Adam, Caldwell, Hugo, Cabrera, Densil and Reinhardt, Dagmar
year 2018
title Digital Fabrication for Retroreflective Ceiling Treatment - Reducing Speech Distraction in an Open Work Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 317-325
doi https://doi.org/10.52842/conf.caadria.2018.1.317
summary This paper presents a case study for the production of retroreflective ceiling treatment in an open work environment. In this setting with multiple talkers, speech distraction can be a significant cause of dissatisfaction and loss of productivity. Ceiling treatment in open plan work environments can provide an important way of ameliorating distraction from unattended speech, and rather than absorbing the sound at the ceiling, this paper examines the possibility of reflecting sound back to the source. Computational design and digital fabrication are integrated in this research for a site-specific deployment of the ceiling treatment and physical testing of prototypes in an acoustics laboratory. The contemporary possibilities that open up with new technologies to understand and resurrect faceted geometries and potentially vary historical precedents via new manufacturing techniques are demonstrated in these novel acoustic reflective ceilings that reflect sound back to their original source.
keywords Acoustic Ceiling Treatment; Computational Design; Digital Fabrication; Faceted Geometries; Retroreflection
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2018_1885
id sigradi2018_1885
authors Herrera, Pablo C.
year 2018
title Artisans and Digital Craft in Latin America: The contribution of architects to their creativity and production
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1179-1186
summary This research explores the work of a generation of Latin-American architects who use programming and fabrication with traditional artisans. In the 21st century, this scenario was empowered from experiences produced in Fab Labs and Makerspaces in the context of localisms. We look at how digital technologies improve their processes, focusing on creation, adapting to the new economy, strengthening the regional identity in the scene of globalized Design, when political discourse drives innovation and technology to its benefit. The main objective is to understand the coexistence of designers and traditional artisans, providing experiences that could strengthen the identity of design in the region.
keywords Artisan, Digital Craft, Digital Fabrication, Latin America
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_125
id ecaade2018_125
authors Khoo, Chin Koi and Shin, Jae-Won
year 2018
title Designing with Biomaterials for Responsive Architecture - A soft responsive "bio-structural" hydrogel skin
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 285-292
doi https://doi.org/10.52842/conf.ecaade.2018.2.285
summary Synthetic biomaterials are not only widely explored in tissue engineering, but also present important opportunities in responsive architecture, especially soft structures and skins. In this paper we present how water-containing hydrogels can be adapted to digital fabrication techniques to design a soft responsive skin with integrated skeleton and surface. This research project details preliminary investigation into how tough hydrogels with different material properties can be designed and incorporated into laser-cutting and 3D printing methods typically used in architectural design. The outcome of this research produces an early prototype of thermally sensitive, tough hydrogel skin that responds to environmental stimuli such as temperature and moisture. Our work provides initial insights into how a soft responsive "bio-structural" architectural skin can be designed by integrating actuation, structure, and skins.
keywords Biomaterials; digital fabriication; hydrogel; responsive architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_328
id acadia18_328
authors Kladeftira, Marirena; Shammas, Demetris; Bernhard, Mathias; Dillenburger, Benjamin
year 2018
title Printing Whisper Dishes. Large-scale binder jetting for outdoor installations
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 328-335
doi https://doi.org/10.52842/conf.acadia.2018.328
summary This research explores the design opportunities of a novel fabrication process for large scale architectural installations suitable for outdoor weather conditions. High resolution, bespoke geometries are easily fabricated at no extra cost in a continuous system using Binder Jet printing technology. The material properties of sandstone are considered a design drive for producing structural paths according to a finite element analysis. Several post processing materials are tested for strengthening the final geometry and providing a water resistant solution. The process is tested in a large, 1:1 sound installation of a pair of acoustic mirrors. First, this paper describes the specific potential and challenges of Binder Jet printing for outdoor applications. It, then, outlines the design principles of the sound device, the acoustic mirror, and their integration into a digital model. Finally, the computational design strategy is described, including topology optimization to reduce the weight/material and the integration of functional details
keywords work in progress, 3d printing, form finding, digital fabrication, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id acadia18_322
id acadia18_322
authors Klemmt, Christoph; Gheorghe, Andrei; Pantic, Igor; Hornung, Philipp; Sodhi, Rajat
year 2018
title Engineering Design Tropisms. Utilization of a bamboo-resin joint for voxelized network geometries
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 322-327
doi https://doi.org/10.52842/conf.acadia.2018.322
summary We propose the combination of the traditional construction material bamboo with a novel epoxy-resin joint. The joint forms a bending-resisting connection that eliminates the need for diagonal members. This allows its utilization along rectangular grids as was tested with the design of a prototype structure that occupies a voxelized space. The design process used an agent-based simulation to mediate between design intent, site and structural considerations. The prototype was constructed with a robotic milling of the components and forms a successful application of the joints and design methodology.
keywords work in progress, digital fabrication, digital materials, robotic production, fabrication & robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaaderis2018_111
id ecaaderis2018_111
authors Kontovourkis, Odysseas and Tryfonos, George
year 2018
title An integrated robotically-driven workflow for the development of elastic tensile structures in various scales
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 111-120
keywords This paper presents an ongoing work towards the development of an integrated robotically-driven workflow that can be used for the design, development and subsequent fabrication of small-to large-scale elastic tensile mesh structures. This approach involves digital form-finding and optimization, driven by robotic manufacturing principles and it aims to overcome the limitations of currently available tools, to work either in the design or the fabrication phase of the process. At the same time, it involves the fabrication of systems in several scales followed by respective analyses of results according to the specific type and diameter of the material used. Specifically, form-finding and optimization are responsible for controlling the pretension of the elastic threads, aiming to determine the final tensile mesh and to generate the additive robotic tool-path. In parallel, the type and diameter of the material involved, define the necessary changes of the end-effector tool, which is responsible to implement the process. Despite that design results can be in any scale, for study purposes an experimentation into a small-scale is conducted, to evaluate the suggested automated construction process in general and the end-effector mechanism in particular.
series eCAADe
email
last changed 2018/05/29 14:33

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_246287 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002