CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 626

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
doi https://doi.org/10.52842/conf.acadia.2018.312
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1648
id sigradi2018_1648
authors Naboni, Roberto; Breseghello, Luca
year 2018
title Fused Deposition Modelling Formworks for Complex Concrete Constructions
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 700-707
summary Concrete is undoubtedly the most employed material in constructions. In principle it allows to build complex architecture, where form can be for the realization of complex shapes. However, the biggest limitation of its use is explained by the demanding process needed to create free-form casts, it often limits its potential to obvious geometries. With the aim of overcoming current limitations, this paper explores the use of additive manufacturing to create formworks for concrete elements. The case study of a complex column is here utilized in order to develop an approach for advanced molds, where pressure levels, fluid dynamics of concrete and disassembly are integrative part of the design process. In conclusion are presented recommendations for further development at larger scale.
keywords Digital concrete, Casting, Additive Manufacturing, Digital Fabrication, Construction Method
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2018_215
id caadria2018_215
authors Raspall, Felix and Banon, Carlos
year 2018
title 3D Printing Architecture: Towards Functional Space Frames
doi https://doi.org/10.52842/conf.caadria.2018.1.215
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 215-224
summary In architecture, the use of Additive Manufacturing (AM) technologies has been primarily limited to the production of scale models. Its application for functional buildings components has been typically undermined by the long production time, elevated cost to manufacture parts and the low mechanical properties of 3D printed components. As AM becomes faster, cheaper and stronger, opportunities for architectures that make creative use of AM to produce functional architectural pieces are emerging. In this paper, we propose and discuss the application of AM in complex space frames and the theoretical and practical implications. Three built projects by the authors support our hypothesis that AM has a clear application in architecture and that space frames constitutes a promising structural typology. In addition, we investigate how AM can be used to resolve architectural systems beyond structure and enclosure, such as data and power transmission. The paper presents background research and our contribution to the digital design tools, the manufacturing and assembly processes, and the analysis of the performances of the building components and the final built pieces.
keywords Additive Manufacturing; Digital Design; Space frames
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia19_606
id acadia19_606
authors Russo, Rhett
year 2019
title Lithophanic Dunes: The Dunejars
doi https://doi.org/10.52842/conf.acadia.2019.606
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 606-615
summary The design of masonry, tile, and ceramics is an integral part of architectural history. High fired clays are unique in that they are amorphous, vitreous, and translucent. Similar types of light transmission through minerals and clays has been achieved in window panes using alabaster or marble, but unlike porcelain these cannot be cast, and they are susceptible to moisture. Additionally, glass and metal are commonly used to glaze ceramics, and this provides further possibility for the combination of translucency with surface ornamentation and decaling. It is within this architectural lineage, of compound stone and glass objects, that the Dunejars are situated. The Dunejars are translucent porcelain vessels that are designed as lenses to transmit different wavelengths of light into intricate and unexpected patterns. Similar recipes for porcelain were developed using wax positives during the 19th century to manufacture domestic Lithophanes; picturesque screens made of translucent porcelain, often displayed in windows or produced as candle shades (Maust 1966). The focus of the research involves pinpointing the lithophanic qualities of the clay so that they can be repeated by recipe, and refined through a digital workflow. The methods outlined here are the product of an interdisciplinary project residency at The European Ceramic Workcenter (Sundaymorning@EKWC) in 2018 to make tests, and obtain technical precision in the areas of, plaster mold design, slip-casting, finishing, firing, and glazing of the Dunejars. The modular implementation of these features at the scale of architecture can be applied across a range of scales, including fixtures, finishes and envelopes, all of which merit further investigation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2018_409
id ecaade2018_409
authors Sousa, José Pedro, Azambuja Varela, Pedro de, Carvalho, Jo?o, Santos, Rafael and Oliveira, Manuel
year 2018
title Mass-customization of Joints for Non-Standard Structures through Additive Manufacturing - The Trefoil and the TriArch projects
doi https://doi.org/10.52842/conf.ecaade.2018.1.197
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 197-204
summary Due to recent advancements, additive manufacturing technologies (AM) have finally addressed the scale and materiality in architecture. The exploration of its capabilities has balanced between the idea of printing entire structures and buildings, and that of printing just a set of selected parts that will integrate and affect the final construction. In the context of the latter approach, this paper present a research work developed by the Digital Fabrication Laboratory (DFL) at FAUP, which is focused in the design and fabrication of non-standard structures. By discussing the relevance of non-standardization in architecture, the paper describes and illustrates two projects that explore the mass production of customized joints through computational design methods and AM technologies - the TREFOIL and the TRI-ARCH structures. By focusing the attention just in the smallest component of a structure, the paper argues about the short-term potential of the real impact of AM technologies in the design thinking and materialization of architectural structures.
keywords Non-standard structures; Additive Manufacturing; 3D Printing; Computational Design; Mass Customization
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2019_664
id caadria2019_664
authors Zhou, Yifan, Zhang, Liming, Wang, Xiang, Chen, Zhewen and Yuan, Philip F.
year 2019
title Exploration of Computational Design and Robotic Fabrication with Wire-Arc Additive Manufacturing Techniques
doi https://doi.org/10.52842/conf.caadria.2019.1.143
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 143-152
summary This paper discussed the exploration of computational design and robotic fabrication with Wire-Arc Additive Manufacturing techniques in a robotic metal printing workshop in Digital Futures 2018. Based on the previous research on structural-performance based design and robotic fabrication, this year's workshop mainly focused on the Wire-Arc Additive Manufacturing techniques and its possible outcomes. A prototype chair was tested for preparation. And the final target of the workshop was to build a bridge about 11m across the river. Through this metal printed bridge project, several computational optimization methods were applied to fulfill the final design. And Wire-Arc Additive Manufacturing techniques with robotic fabrication were carried out during the fabrication process.
keywords computational design; robotic fabrication; wire-arc additive manufacturing techniques
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_286
id acadia18_286
authors Claire Im, Hyeonji; AlOthman, Sulaiman; García del Castillo, Jose Luis
year 2018
title Responsive Spatial Print. Clay 3D printing of spatial lattices using real-time model recalibration
doi https://doi.org/10.52842/conf.acadia.2018.286
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 286-293
summary Additive manufacturing processes are typically based on a horizontal discretization of solid geometry and layered deposition of materials, the speed and the rate of which are constant and determined by the stability criteria. New methods are being developed to enable three-dimensional printing of complex self-supporting lattices, expanding the range of possible outcomes in additive manufacturing. However, these processes introduce an increased degree of formal and material uncertainty, which require the development of solutions specific to each medium. This paper describes a development to the 3D printing methodology for clay, incorporating a closed-loop feedback system of material surveying and self-correction to recompute new depositions based on scanned local deviations from the digital model. This Responsive Spatial Print (RSP) method provides several improvements over the Spatial Print Trajectory (SPT) methodology for clay 3D printing of spatial lattices previously developed by the authors. This process compensates for the uncertain material behavior of clay due to its viscosity, malleability, and deflection through constant model recalibration, and it increases the predictability and the possible scale of spatial 3D prints through real-time material-informed toolpath generation. The RSP methodology and early successful results are presented along with new challenges to be addressed due to the increased scale of the possible outcomes.
keywords work in progress, closed loop system, spatial clay printing, self-supporting lattice, in-situ printking, extrusion rate, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2018_315
id ecaade2018_315
authors Koehler, Daniel, Abo Saleh, Sheghaf, Li, Hua, Ye, Chuwei, Zhou, Yaonaijia and Navasaityte, Rasa
year 2018
title Mereologies - Combinatorial Design and the Description of Urban Form.
doi https://doi.org/10.52842/conf.ecaade.2018.2.085
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
summary This paper discusses the ability to apply machine learning to the combinatorial design-assembly at the scale of a building to urban form. Connecting the historical lines of discrete automata in computer science and formal studies in architecture this research contributes to the field of additive material assemblies, aggregative architecture and their possible upscaling to urban design. The following case studies are a preparation to apply deep-learning on the computational descriptions of urban form. Departing from the game Go as a testbed for the development of deep-learning applications, an equivalent platform can be designed for architectural assembly. By this, the form of a building is defined via the overlap between separate building parts. Building on part-relations, this research uses mereology as a term for a set of recursive assembly strategies, integrated into the design aspects of the building parts. The models developed by research by design are formally described and tested under a digital simulation environment. The shown case study shows the process of how to transform geometrical elements to architectural parts based merely on their compositional aspects either in horizontal or three-dimensional arrangements.
keywords Urban Form; Discrete Automata ; Combinatorics; Part-Relations; Mereology; Aggregative Architecture
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaaderis2018_111
id ecaaderis2018_111
authors Kontovourkis, Odysseas and Tryfonos, George
year 2018
title An integrated robotically-driven workflow for the development of elastic tensile structures in various scales
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 111-120
keywords This paper presents an ongoing work towards the development of an integrated robotically-driven workflow that can be used for the design, development and subsequent fabrication of small-to large-scale elastic tensile mesh structures. This approach involves digital form-finding and optimization, driven by robotic manufacturing principles and it aims to overcome the limitations of currently available tools, to work either in the design or the fabrication phase of the process. At the same time, it involves the fabrication of systems in several scales followed by respective analyses of results according to the specific type and diameter of the material used. Specifically, form-finding and optimization are responsible for controlling the pretension of the elastic threads, aiming to determine the final tensile mesh and to generate the additive robotic tool-path. In parallel, the type and diameter of the material involved, define the necessary changes of the end-effector tool, which is responsible to implement the process. Despite that design results can be in any scale, for study purposes an experimentation into a small-scale is conducted, to evaluate the suggested automated construction process in general and the end-effector mechanism in particular.
series eCAADe
email
last changed 2018/05/29 14:33

_id acadia20_164p
id acadia20_164p
authors Lange, Christian; Ratoi, Lidia; Co Lim, Dominic; Hu, Jason; Baker, David M.; Yu, Vriko; Thompson, Phil
year 2020
title Reformative Coral Habitats
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 164-169
summary Coral reefs are some of the most diverse ecologies in the marine world. They are the habitat to tens of thousands of different marine species. However, these wildlife environments are endangered across the globe. Recent research estimates that around 75 percent of the remaining coral reefs are currently under threat. In 2018 after a devastating storm, Hong Kong lost around 80% of its existing corals. Consequently, a team consisting of marine biologists and architects at The University of Hong Kong has developed a series of performative structures that have been deployed in the city's waters in July 2020, intending to aid new coral growth over the coming years. The project was commissioned by the Agriculture, Fisheries, and Conservation Department (AFCD) and is part of an ongoing active management measure for coral restoration in Hoi Ha Wan Marine Park in Hong Kong. The following objectives were defined as part of the design and fabrication research of the project. To develop a design strategy that builds on the concept of biomimicry to allow for complex spaces to occur that would provide attributes against the detachment of the inserted coral fragment, hence could enhance a diverse marine life specific to the context of the cities water conditions. To generate an efficient printing path that accommodates the specific morphological design criteria and ensures structural integrity and the functional aspects of the design. To develop an efficient fabrication process with a DIW 3D printing methodology that considers warping, shrinkage, and cracking in the clay material. The research team developed a method that combined an algorithmic design approach for the design of different geometries with a digital additive manufacturing process utilizing robotic 3D clay printing. The overall fabrication strategy for the complex and large pieces sought to ensure structural longevity, optimize production time, and tackle the involved double-sided printing method. Overall, 128 tiles were printed, covering roughly 40sqm of the seabed.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
doi https://doi.org/10.52842/conf.acadia.2018.434
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia18_146
id acadia18_146
authors Rossi, Gabriella; Nicholas, Paul
year 2018
title Re/Learning the Wheel. Methods to Utilize Neural Networks as Design Tools for Doubly Curved Metal Surfaces
doi https://doi.org/10.52842/conf.acadia.2018.146
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 146-155
summary This paper introduces concepts and computational methodologies for utilizing neural networks as design tools for architecture and demonstrates their application in the making of doubly curved metal surfaces using a contemporary version of the English Wheel. The research adopts an interdisciplinary approach to develop a novel method to model complex geometric features using computational models that originate from the field of computer vision.

The paper contextualizes the approach with respect to the current state of the art of the usage of artificial neural networks both in architecture and beyond. It illustrates the cyber physical system that is at the core of this research, with a focus on the employed neural network–based computational method. Finally, the paper discusses the repercussions of these design tools on the contemporary design paradigm.

keywords full paper, ai & machine learning, digital craft, robotic production, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia18_250
id acadia18_250
authors Seibold, Zach; Grinham, Jonathan; Geletina, Olga; Ahanotu, Onyemaechi; Sayegh, Allen; Weaver, James; Bechthold, Martin
year 2018
title Fluid Equilibrium: Material Computation in Ferrofluidic Castings
doi https://doi.org/10.52842/conf.acadia.2018.250
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 250-259
summary We present a computationally-based manufacturing process that allows for variable pattern casting through the use of ferrofluid – a mixture of suspended magnetic nanoparticles in a carrier liquid. The capacity of ferrofluid to form intricate spike and labyrinthine packing structures from ferrohydrodynamic instabilities is well recognized in industry and popular science. In this paper we employ these instabilities as a mold for the direct casting of rigid materials with complex periodic features. Furthermore, using a bitmap-based computational workflow and an array of high-strength neodymium magnets with linear staging, we demonstrate the ability to program the macro-scale pattern formation by modulating the magnetic field density within a single cast. Using this approach, it is possible to program specific patterns in the resulting cast tiles at both the micro- and macro-scale and thus generate tiled arrays with predictable halftone-like image features. We demonstrate the efficacy of this approach for a variety of materials typically used in the architecture, engineering, and construction industries (AEC) including epoxys, ceramics, and cements.
keywords full paper, materials & adaptive systems, digital fabrication, digital materials, physics
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id acadia18_350
id acadia18_350
authors Seibold, Zach; Hinz, Kevin; García del Castillo y López, Jose Luis; Martínez Alonso, Nono; Mhatre, Saurabh; Bechthold, Martin
year 2018
title Ceramic Morphologies. Precision and control in paste-based additive manufacturing
doi https://doi.org/10.52842/conf.acadia.2018.350
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 350-357
summary Additive manufacturing techniques (AMT), commonly referred to as 3D printing, are emerging as a new area of study for the production of ceramic elements at the architectural scale. AMT may allow architectural designers to break from the established means of designing with ceramic elements – a process where designs are typically confined to a limited selection of building components produced by machine, die or fixture. In this paper, we report a method for the design and additive manufacture of customizable ceramic masonry elements via paste-based extrusion. A novel digital workflow allowed for precise control of part design, and generated manufacturing parameters such as toolpath geometry and machine code. 3D scans of a selection of elements provide an initial analysis of print fidelity. We discuss the current constraints of this process and identify several on-going research trajectories generated because of this research.
keywords work in progress, fabrication & robotics, materials/adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia18_302
id acadia18_302
authors Zivkovic, Sasa; Battaglia, Christopher
year 2018
title Rough Pass Extrusion Tooling. CNC post-processing of 3D-printed sub-additive concrete lattice structures
doi https://doi.org/10.52842/conf.acadia.2018.302
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 302-311
summary Rough Pass Extrusion Tooling advances the manufacturing precision of full-scale Sub-Additive 3D printed concrete lattices in a three-step process that involves spatial 3D printing, high precision 3D scanning, and CNC post-processing. Utilizing robotics and computation, Sub-Additive Manufacturing (Battaglia et al. 2018) leverages digital workflows to produce structurally, materially, and spatially optimized lightweight concrete building components. Instead of further refining the 3D printing practice towards accuracy, and unlike other research projects that investigate 3D printing and subsequent post-processing, the method proposes to deliberately print a “rough pass”, accommodating any fabrication inaccuracy inevitably resulting from the concrete material and nozzle extrusion process. In a second step, supported by the advancement of 3D scanning, accuracy and geometric intricacy are achieved through locally post-processing components along edges, in pockets, on surfaces, and in areas of joinery. Rough Pass Extrusion Tooling enables the incorporation of higher fabrication tolerances as well as the integration of building systems, hardware, and complex connections. The method takes full advantage of the 3D printing process while introducing means to dramatically increase fabrication precision. Procedural infidelity – not aiming to solve accuracy through 3D printing alone – enables the development of a technically, methodologically, aesthetically, and performatively progressive multi-process fabrication method which opens a new realm for concrete printing accuracy. This paper closely examines CNC post-processing for Sub-Additive concrete print assemblies, addressing methodologies, opportunities, and shortcomings of such an approach.
keywords full paper, fabrication & robotics, materials/adaptive systems, digital craft, fabrication tolerances
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2018_233
id ecaade2018_233
authors Kontiza, Iacovina, Spathi, Theodora and Bedarf, Patrick
year 2018
title Spatial Graded Patterns - A case study for large-scale differentiated space frame structures utilising high-speed 3D-printed joints
doi https://doi.org/10.52842/conf.ecaade.2018.2.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-46
summary Geometric differentiation is no longer a production setback for industrial grade architectural components. This paper introduces a design and fabrication workflow for non-repetitive large-scale space frame structures composed of custom-manufactured nodes, which exploits the advantages of latest advancements in 3D-printing technology. By integrating design, fabrication and material constraints into a computational methodology, the presented approach addresses additive manufacturing of functional industry-grade parts in short time, high speed and low cost. The resulting case study of a 4.5 x 4.5 x 2.5 m lightweight kite structure comprises 1380 versatile fully-customised connectors and outlines the manifold potential of additive manufacturing for architecture much bigger than the machine built space. First, after briefly introducing space frames in architecture, this paper discusses the computational framework of generating irregular space frames and parametric joint design. Second, it examines the advantages of MJF printing in conjunction with integrating smart sequencing details for the following assembly process. Finally, a conclusive outlook is given on improvements and further developments for bespoke 3D-printed space frame structures.
keywords 3D-printing; Multi-Jet Fusion; Space Frame; Graded Subdivision
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_423146 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002