CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
doi https://doi.org/10.52842/conf.acadia.2018.226
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id caadria2018_324
id caadria2018_324
authors Mansoori, Maryam, Kalantar, Negar, Creasy, Terry and Rybkowski, Zofia
year 2018
title Toward Adaptive Architectural Skins - Designing Temperature-Responsive Curvilinear Surfaces
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 329-338
doi https://doi.org/10.52842/conf.caadria.2018.2.329
summary This research investigated the possibility of creating adaptable and precise curvilinear surfaces through the deformation of flat wooden surfaces. A prototype design system was developed to accomplish this task. The goal was to take a commonly-used architectural material, which is valued for its environmental sustainability and its aesthetic qualities, and to re-conceptualize it for use in cutting-edge adaptive digital designs. We therefore sought to develop a way to create wooden surfaces that could predictably transform in response to environmental stimuli. We successfully developed and tested the reversible deformation of a wooden surface by laminating a shape-memory polymer onto a kerfed wooden plane. The composite obtains its responsiveness from the shape-memory polymer, and its curvature direction and structural stability from the kerfed wood. The composite is able to deform to a defined curvilinear surface when heated to 40-60 degrees Celsius, and then self-transform back to the original flat surface when cooled. In addition to demonstrating kinetic behavior for a wood-based composite, the prototype offers a practical technique that can be used by designers to create flexible, inexpensive fabrication and packaging strategies.
keywords Environmental-Responsive Architecture; Shape Memory Polymer; Wood Fabrication; Continuous Curvilinear Surfaces
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_124
id ecaade2018_124
authors Asanowicz, Aleksander
year 2018
title Digital Architectural Composition in Virtual Space
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 703-710
doi https://doi.org/10.52842/conf.ecaade.2018.2.703
summary The paper is divided into two main parts. The first part refers to the history of attempts to use VR technology in the process of architectural space creation in a dynamic way. The second part presents the experiment carried out at our Faculty, in which we implemented VR in the Digital Architectural Composition course. This experiment was divided into two parts. In the both parts Google Blocks software was used. In the first part we have used the first exercises which was completed by students during the first semester in a traditional way (a cardboard mock-up) and then in the third semester as a digital model in Cinema 4D. It was a Solid form with. In the second part of this experiment we asked students to create a sketch of walk through space and they can created their own shapes in their design. The analysis of the results allows to formulate the thesis that there is a qualitative revolution in the area of human-computer interface. The main conclusion is that Virtual Reality eliminates the boundaries between the spectator and the space and that the idea - Designing Become a Place" is still actual.
keywords Architectural composition; virtual reality; direct design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_255
id ecaade2018_255
authors Danesh, Foroozan, Baghi, Ali and Kalantari, Saleh
year 2018
title Programmable Paper Cutting - A Method to Digitally Fabricate Transformable, Complex Structural Geometry
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 489-498
doi https://doi.org/10.52842/conf.ecaade.2018.2.489
summary This paper presents a computational approach to generating architectural forms for large spanning structures based on a "paper-cutting" technique. Using this approach, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. Our computational system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach. To develop the model, we analyzed paper-cutting techniques, extracted the relevant formative parameters, and created a simulation using finite element analysis. We then used a data-mining approach through 400 simulations and applied a regression analysis to create a prediction model. Given a small number of input variables from the designer, this model can rapidly and precisely predict the transformation volume of a paper-cutting pattern. Additional structural characteristics will be modelled in future work. The use of this tool makes paper-cut design approaches more practical by changing a non-systematic, labor-intensive design process into a more precise and efficient one.
keywords Paper-cut?; Transformable geometry; Design method; Model prediction; Data mining; Regression analysis
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201816305
id ijac201816305
authors Patt, Trevor Ryan
year 2018
title Multiagent approach to temporal and punctual urban redevelopment in dynamic, informal contexts
source International Journal of Architectural Computing vol. 16 - no. 3, 199-211
summary This article presents design research speculating on computationally enabled planning approaches for urban sites where informal developments make conventional masterplans ineffectual. The project advances the thesis that the spatial complexity of urban sites can be effectively studied through a network or mesh representation and that rapid change in informal settlements is not an obstacle to planned redevelopment but can be addressed through dynamic modeling and punctual interventions. In this way, the rapid turnover of the built environment can be a mechanism through which to introduce directed planning without canceling out bottom-up actions. In the case study presented, we use a multiagent approach that is able to adapt to a continuously changing context. The agents are driven by weighted random walks and compute localized analyses of the morphology of the network of public space as they move. The information generated by the multiagent simulation is aggregated to identify potential modifications to the urban fabric, with an emphasis on pedestrian connectivity.
keywords Adaptive planning, multiagent systems, urban morphology, network analysis, spectral clustering, informal urbanism, generative design, participatory frameworks
series journal
email
last changed 2019/08/07 14:03

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
doi https://doi.org/10.52842/conf.caadria.2018.1.245
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_306
id caadria2018_306
authors Liu, Jie, Ma, Hongtao, Tang, Ning, Xu, Weiguo and Luo, Dan
year 2018
title Kinetair: Interactive Stairs with Multiple Functions
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-378
doi https://doi.org/10.52842/conf.caadria.2018.2.369
summary Kinetair is an interactive stairs prototype which could change its appearance according to the surrounding conditions, providing a diversity of functions, such as stairs, exhibition walls, furniture and so on. This research is based on the Interactive Architecture theory, integrating with digital fabrication technology. This paper will illustrate the origin of the concept, the concept development process, the fabrication process and the various possible application of Kinetair. This experiment evokes us to rethink the fundamental meanings of the architecture components in a brand new perspective, and stimulates designers to explore the new features of conventional constructions with cutting-edge technologies.
keywords interactive stairs; stair design; kinetic structure; dynamic design; adaptive form
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_285
id ecaade2018_285
authors Tsikoliya, Shota, Vasko, Imrich, Miškovičová, Veronika, Olontsev, Ivan and Kovařík, David
year 2018
title Programmable Bending - grain-informed simulation and design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 309-316
doi https://doi.org/10.52842/conf.ecaade.2018.2.309
summary The project investigates the potential of programmable bending - a strategy, which informs bending simulations of multilayered veneer elements with the data of its anisotropic grain structure. Project further examines the possibilities of using these irregular material characteristics as a design driver. The project questions the possibility of informing the design with the particular characteristics of the material structure and of creating complex geometries from non-customized or minimally customizes mass-produced elements. Project develops a workflow, in which a two-dimensional scan of the material is transformed into a vector field and consequently into a mesh with variable stiffness characteristics. The stiffness of each edge within a mesh was calculated basing on an angle between this edge and the relevant vector within a vector-field. That resulted in realistic simulation, which differentiated bending characteristics along the grain and perpendicular to the grain. Uneven connection of several layers of active-bended veneer allows to accumulate local stresses and pre-program bending characteristics of the structure. As a result active-bended structure forms particular predefined and predesigned shape and possesses locally variable stiffness and flexibility. The project applies this strategy to the design of the pavilion located within the urban context of a public space.
keywords programmable bending; grain-informed simulation; veneer; computational design
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201816203
id ijac201816203
authors Anderson, Carl; Carlo Bailey, Andrew Heumann and Daniel Davis
year 2018
title Augmented space planning: Using procedural generation to automate desk layouts
source International Journal of Architectural Computing vol. 16 - no. 2, 164-177
summary We developed a suite of procedural algorithms for space planning in commercial offices. These algorithms were benchmarked against 13,000 actual offices designed by human architects. The algorithm performed as well as an architect on 77% of offices, and achieved a higher capacity in an additional 6%, all while following a set of space standards. If the algorithm used the space standards the same way as an architect (a more relaxed interpretation), the algorithm achieved a 97% match rate, which means that the algorithm completed this design task as well as a designer and in a shorter time. The benchmarking of a layout algorithm against thousands of existing designs is a novel contribution of this article, and we argue that it might be a first step toward a more comprehensive method to automate parts of the office layout process.
keywords Office design, design augmentation, space planning, automation, office layout, desk layouts
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_219
id ecaade2018_219
authors Bai, Nan, Ye, Wenqia, Li, Jianan, Ding, Huichao, Pienaru, Meram-Irina and Bunschoten, Raoul
year 2018
title Customised Collaborative Urban Design - A Collective User-based Urban Information System through Gaming
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 419-428
doi https://doi.org/10.52842/conf.ecaade.2018.1.419
summary As we step into a new data-based information age, it is important to get citizens involved in the whole design process. Our research tries to build up a user-based urban information system by collecting the data of neighborhood land use preference from all the residents through gaming. The result of each individual decision will be displayed in real time using Augmented Reality technology, while the collective decision dataset will be stored, analyzed and learnt by computer, forming an optimal layout that meets the highest demand of the community. A pre-experiment has been conducted in a. an abstract virtual site and b. an existing site by collecting opinions from 122 participants, which shows that the system works well as a new method for collaborative design. This system has the potential to be applied both in realistic planning processes, as a negotiation toolkit, and in virtual urban forming, in the case of computer games or space colonization.
keywords Collaborative Design; Customization; Urban Design; Gaming; Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_377
id ecaade2018_377
authors Beaudry Marchand, Emmanuel, Dorta, Tomás and Pierini, Davide
year 2018
title Influence of Immersive Contextual Environments on Collaborative Ideation Cognition - Through design conversations, gestures and sketches
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 795-804
doi https://doi.org/10.52842/conf.ecaade.2018.2.795
summary In the design studio, Virtual Reality (VR) has mainly been included as a visualization tool to explore pre-designed ideas developed in traditional 3D software or using pen on paper. Meanwhile, a reshaping of the design process has been taking place, bringing forward interaction/experiential concerns and co-design approaches throughout disciplines in a push for a more thorough consideration of projects' contexts. This paper reports an exploratory study of how immersive contextual representations influence the co-ideation process. Audio-video recordings of co-ideation sessions (9) from a pedagogical studio were analyzed through verbal and representational (sketches and design gestures) exchanges as occurring in three different conditions: (a) pen on paper, immersive headset-free VR (b) without, and (c) with the use of contextual immersive environment (photogrammetric scans and 3D models). Results show that, although design conversations were similar across all conditions, design gestures were more often directly related to- than independent from the graphical representation only when using an immersive contextual environment. Furthermore, the rate of sketching episodes in general and sketching explanations were considerably lower in this condition. This could imply that use of pre-made context greatly reduces the need of sketching elements to support a clearer co-ideation.
keywords Immersive context; Design gestures; Design conversations; Sketches; Co-design studio; Design cognition
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_237
id ecaade2018_237
authors Beir?o, José, Mateus, Nuno and Siopa Alves, Jo?o
year 2018
title Modular, Flexible, Customizable Housing and 3D Printed - An experiment in architectural education
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 381-390
doi https://doi.org/10.52842/conf.ecaade.2018.1.381
summary Technological developments in construction always bring new expectations in terms of design possibilities. The use of digital tools both in design exploration and applied to explore new forms of computer controlled manufacture provide opportunities for the emergence of new tectonics. Because these transformations change our construction reality fast and with impacts never seen before, it is important that architectural education follows such change and prepares students for what will be their future really, making them capable to accept and incorporate the tectonic implications of digital tools and construction methods in the way they design. This paper shows a tutored approach to mass customized housing resorting to 3D printed parametric modular construction.Please write your abstract here by clicking this paragraph.
keywords caad education; mass customization; 3D printed housing
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_227
id ecaade2018_227
authors Chatzitsakyris, Panagiotis
year 2018
title EventMode - A new computational design tool for integrating human activity data within the architectural design workflow
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 649-656
doi https://doi.org/10.52842/conf.ecaade.2018.1.649
summary Architectural designers are currently depending on a multitude of elaborate computational tools in order to explore, manipulate and visualize the geometric form of their building projects. However, if architecture can be perceived as the manipulation of geometric form in direct relation to human activities and events that take place inside it, then it is evident that such design parameters are not sufficiently represented in the currently available modeling software. Would it be possible to introduce the human activity element in the aforementioned computational tools in a way that informs the design process and improves the final building product? This paper attempts to answer this question by introducing a new experimental design tool that enables the creation of parametric human activity envelopes within three-dimensional digital models. The novel approach is that this tool enables the parametric interaction of these components with the actual building geometry and generates novel visual and data representations of the 3D model. The goal is to improve the decision-making process of architects as well as their clients by enabling them to evaluate and iterate their designs based not only on the building's form but also on the human spatial events that take place inside it. A prototype implementation demonstrates the tool's practical application through three design examples.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_188
id ecaade2018_188
authors Coppens, Adrien, Mens, Tom and Gallas, Mohamed-Anis
year 2018
title Parametric Modelling Within Immersive Environments - Building a Bridge Between Existing Tools and Virtual Reality Headsets
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 711-716
doi https://doi.org/10.52842/conf.ecaade.2018.2.711
summary Even though architectural modelling radically evolved over the course of its history, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components in the corresponding design tasks is mostly limited to enhancing visualisation. Little to none of these tools attempt to tackle the challenge of modelling within immersive environments, that calls for new input modalities in order to move away from the traditional mouse and keyboard combination. In fact, relying on 2D devices for 3D manipulations does not seem to be effective as it does not offer the same degrees of freedom. We therefore present a solution that brings VR modelling capabilities to Grasshopper, a popular parametric design tool. Together with its associated proof-of-concept application, our extension offers a glimpse at new perspectives in that field. By taking advantage of them, one can edit geometries with real-time feedback on the generated models, without ever leaving the virtual environment. The distinctive characteristics of VR applications provide a range of benefits without obstructing design activities. The designer can indeed experience the architectural models at full scale from a realistic point-of-view and truly feels immersed right next to them.
keywords Computer-aided Design; Parametric modelling; Virtual Reality; Architectural modelling; Human-Computer Interaction
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_403
id ecaade2018_403
authors Coraglia, Ugo Maria, Wurzer, Gabriel and Fioravanti, Antonio
year 2018
title ORe – A simulation model for Organising Refurbishments
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 605-610
doi https://doi.org/10.52842/conf.ecaade.2018.2.605
summary The problem of interferences due to the refurbishing activities of a complex building, carried out in parallel with the daily activities that characterize it, is not to be underestimated, especially when talking about a hospital structure. Consequently, the benefits that would be obtained by reducing the presence of construction activities result important in terms of safety and health of users, above all hospital patients. Setting the best solution of Gantt in the early stages of planning can be a winning strategy, as well as being able to recognize the safest and fastest path (e.g. predicting which is the fastest way to reach the rooms taken into consideration by the refurbishment). At the same time, being able to check which activities are most penalized by the presence of the construction site and to set which are essential for the survival of the activities that characterize the environment to be refurbished, e.g. the hospital ward, is a valid support tool for the healthcare staff. The proposed tool aims, on the one hand, to help designers by proposing the best possible Gantt solutions in relation to the management of daily activities that can not be suspended and on the other hand to support healthcare staff in the organization of these latter.
keywords Refurbishment; Complex building; Construction site; Space syntax; Bubble diagram; Gantt
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_139
id ecaade2018_139
authors Cudzik, Jan and Radziszewski, Kacper
year 2018
title Artificial Intelligence Aided Architectural Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 77-84
doi https://doi.org/10.52842/conf.ecaade.2018.1.077
summary Tools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools that suit their specific needs. In some cases, they use artificial intelligence. Despite many similarities, they have different advantages and disadvantages. Therefore the change in the design process is more visible and unseen before solution are brought in the discipline. The article presents methods of applying the selected artificial intelligence algorithms: swarm intelligence, neural networks and evolutionary algorithms in the architectural practice by authors. Additionally research shows the methods of analogue data input and output approaches, based on vision and robotics, which in future combined with intelligence based algorithms, might simplify architects everyday practice. Presented techniques allow new spatial solutions to emerge with relatively simple intelligent based algorithms, from which many could be only accomplished with dedicated software. Popularization of the following methods among architects, will result in more intuitive, general use design tools.
keywords computer aideed design; artificial intelligence,; evolutionary algorithms; swarm behaviour; optimization; parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_433
id ecaade2018_433
authors Daher, Elie, Kubicki, Sylvain and Pak, Burak
year 2018
title Participation-based Parametric Design in Early Stages - A participative design process for spatial planning in office building
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 429-438
doi https://doi.org/10.52842/conf.ecaade.2018.1.429
summary The term participation has been used to define different activities, such as civil debate, communication, consultation, delegation, self-help construction, political decisions. However, participation in design started from the idea that individuals whom being affected by a design project must contribute to the design process. Recently, designers have been moving closer to the future users and developing new ways to empower them to get involved in the design process. In this paper we rethink the way the early design process is developed in a participatory approach thanks to parametric methods. A use case is proposed showing the potential of parametric design methods to empower the participation of users in the design of their facilities. The use case is dealing in particular with the spatial planning of an office building where the users together with the spatial planning team are able to design the layout spatial configuration by 1) fixing the objectives, 2) manipulating the model, 3)modifying some parameters, 4) visualizing the iterations and evaluating in a real-time each solution in an interactive 3D environment and together with facility managers 5) choosing the configuration of the spatial layout.
keywords Computational design; Participatory design; Optimization ; Parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_332
id ecaade2018_332
authors de Azambuja Varela, Pedro and Sousa, José Pedro
year 2018
title Reinforced, Reusable, Reconfigurable Molds for Cast Voussoirs
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 771-780
doi https://doi.org/10.52842/conf.ecaade.2018.1.771
summary This paper describes the theory and practical experiments on the development of a system for the deployment of stereotomic voussoirs. The recent availability of digital design and fabrication tools has enabled architects to embrace stereotomic thinking, allowing for the efficient spanning of spaces with low tensile capable materials such as stone. The proposed fabrication system is an evolution of an on-going research which creates a direct link between the geometrical and material needs of a stereotomic structure with materialization tools that enable the swift creation of multiple customized blocks.
keywords stereotomy; voussoir; mould; robotic; mass customization; plaster
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_968786 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002