CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 605

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
doi https://doi.org/10.52842/conf.acadia.2018.216
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_329
id ecaade2018_329
authors De Luca, Francesco, Nejur, Andrei and Dogan, Timur
year 2018
title Facade-Floor-Cluster - Methodology for Determining Optimal Building Clusters for Solar Access and Floor Plan Layout in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2018.2.585
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 585-594
summary Daylight standards are one of the main factors for the shape and image of cities. With urbanization and ongoing densification of cities, new planning regulations are emerging in order to manage access to sun light. In Estonia a daylight standard defines the rights of light for existing buildings and the direct solar access requirement for new premises. The solar envelope method and environmental simulations to compute direct sun light hours on building façades can be used to design buildings that respect both daylight requirements. However, no existing tool integrates both methods in an easy to use manner. Further, the assessment of façade performance needs to be related to the design of interior layouts and of building clusters to be meaningful to architects. Hence, the present work presents a computational design workflow for the evaluation and optimisation of high density building clusters in urban environments in relation to direct solar access requirements and selected types of floor plans.
keywords Performance-driven Design; Urban Design; Direct Solar Access; Environmental Simulations and Evaluations; Parametric Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
doi https://doi.org/10.52842/conf.caadria.2018.2.165
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia18_342
id acadia18_342
authors Wu, Kaicong; Kilian, Axel
year 2018
title Robotic Equilibrium: Scaffold Free Arch Assemblies
doi https://doi.org/10.52842/conf.acadia.2018.342
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 342-349
summary Compression only arch structures are structurally highly efficient in force equilibrium. However, the material efficiency is offset by the traditional use of scaffolds to position materials and counter the out of equilibrium forces during assembly. We introduce a method of sequentially assembling compression only structures without a scaffold by robotically maintaining the compression equilibrium in every step. A two-arm collaborative robotic setup was used to maintain force equilibrium throughout arch assembly with the arms taking turns first hot wire cutting and placing blocks and providing a temporary scaffold to support the arch end point.

To test the approach, a single catenary arch was generated using form-finding techniques and sequentially built from foam blocks. Moving forward we show the relationship between the joint valence (largest number of joined branches) of a multi-branched structure and the minimum number of robotic arms required for assembly using our initial technique. With only two robotic arms available, the technique was further developed to reduce the required number of arms per arch branch from two to one by attaching caterpillar tracks at the block supporting end effector. This allows a human to load the next block and the arm to move forward along the arch while maintaining equilibrium. Results show that robotic equilibrium scaffold free arch assembly is possible and can reduce scaffold waste and maintain the material efficiency of compression only structures. Future work will explore further applications of assistive robotics in construction replacing static construction aids with dynamic sensory feedback of equilibrium forces.

keywords work in progress, collaborative sequential assembly, robotic equilibrium, compression only structures, form finding
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id caadria2018_082
id caadria2018_082
authors Zhu, Li and Yang, Yang
year 2018
title Optimization Design Study of Lightweight Temporary Building Integrated with PCMS Through CFD Simulation
doi https://doi.org/10.52842/conf.caadria.2018.2.155
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 155-164
summary In fact, the phase change materials (PCMs) integrated in the building envelope structure can decrease the buildings' energy consumption by enhancing thermal energy storage capacity, which has been acknowledged and appreciated by many engineers and architects. To achieve a better practical application effect under the minimum cost principle and provide a different design method based on indoor thermal discomfort evaluation results for stakeholders, this paper numerically test the application effect of composite envelope under Tianjin climate through commercial computational fluid dynamic soft (Fluent). Further, parameter sensitivity to thermal performance of the composite envelope and indoor thermal discomfort are investigated in this paper, and two different evaluation indicators are introduced and used here. The numerical results obtained in this paper support the high potential of using PCM in lightweight temporary buildings and highlight the further optimization design work.
keywords Optimization design; Lightweight temporary building; PCMs; CFD simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_386
id ecaade2018_386
authors Brandao, Filipe, Paio, Alexandra and Antunes, Nuno
year 2018
title Towards a Digitally Fabricated Disassemble-able Building System - A CNC fabricated T-Slot Joint
doi https://doi.org/10.52842/conf.ecaade.2018.2.011
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 11-20
summary Growing dissemination of digital fabrication technologies coupled with a renewed interest in wood as a construction material have led to a resurgence of research into integral wood joints. Recent research on digitally fabricated wood joints has focused primarily on robotic or on CNC router produced snap-fit or tab-and-slot joints. These types of joints have several problems in sheathing to structure connections. The present paper reports on research into design and fabrication of T-slot joints that allow hidden back-face connections which are disassemble-able. It is part of an ongoing research whose aim is to develop disassemble-able and mass customizable construction system of partition walls for building renovation.
keywords Wood Joints; Digital Fabrication; Wood; Design for Disassembly
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_194
id ecaade2018_194
authors Paixao, Jose, Fend, Florian and Hirschberg, Urs
year 2018
title Break It Till You Make It - A design studio for problem-finding
doi https://doi.org/10.52842/conf.ecaade.2018.1.753
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 753-762
summary In a context where architectural education is undergoing great transformations due to the impact of digital technology, the authors present a design studio model that rather than teaching how to operate the tool en vogue focuses on the formulation of questions. Traditional pedagogic practices have privileged answers in knowledge production, but an alternative is proposed. A methodology was devised in which problem-finding is moved forward by an iterative process of experimental making. This was tested in Winter 2017 with results showing a diversity in questions raised, but also the premature discontinuation of several paths of inquiry. Only one completed all 6 planned iterations and benefited from the final, in which the building of a 1:1 prototype informed its research focus. The conclusions highlight the contribution of this model in preparing future practitioners with an attitude of inquiry and drive to experiment that will resist obsoleteness from rapid technological developments.
keywords Architectural Education; Design Studio; Problem-Based Learning; Material Systems; Digital Fabrication; Wood Construction
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac201816301
id ijac201816301
authors Rasmussen, Troels A. and Timothy Merritt
year 2018
title ProjecTables: Augmented CNC tools for sustainable creative practices
source International Journal of Architectural Computing vol. 16 - no. 3, 227-242
summary Computer numerical control (CNC) cutting machines have become essential tools for designers and architects enabling rapid prototyping, model building, and production of high-quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for computer numerical control cutting that would have been previously thrown away, at the same time supporting esthetic choices related to wood grain, avoiding surface blemishes, and other relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper understanding of current work practices and sustainability issues with computer numerical control cutting machines and identified useful features for interactive packing to reduce waste while supporting esthetic concerns for exhibition quality design projects.
keywords Sustainability, fabrication, computer numerical control cutting machines, CNC cutting machines, visual augmentation, digital tools
series journal
email
last changed 2019/08/07 14:03

_id sigradi2018_1428
id sigradi2018_1428
authors Salzberger, Max; Lautwein, Michael
year 2018
title SimpliciDIY – Do-it-yourself wood building system
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1233-1240
summary Worldwide there is a big need for affordable livingspace. Globalization leads to a connection of development and ideas in the field of building. Open Source communities could improve and accelerate this development. The potential of theses communities lies in the connection of different diciplines. Especially for building projects with a small budget and a willingness to participate in the work process open source do-it-yourself constructions are a great opportunity to help cover the need of affordable work and living space. Renewable materials such as wood offer great potential here. New, standardised technologies make a decentralised production possible.
keywords Open source; Do it yourself; Wood construction; Bottom up; Affordable livingspace
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
doi https://doi.org/10.52842/conf.acadia.2018.404
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2018_107
id caadria2018_107
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2018
title SLAM-Based MR with Animated CFD for Building Design Simulation
doi https://doi.org/10.52842/conf.caadria.2018.1.391
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 391-400
summary In advanced society, the existing building stock has huge social, economic, and environmental impact. There is a high demand for stock renovation, which gives existing buildings new lives, rather than building new ones. During the renovation process, it is necessary to simultaneously achieve architectural, facilities, structural, and environmental design in order to accomplish a healthy, comfortable, and energy-saving indoor environment, prevent delays in problem solving, and achieve a timely feedback process. This study tackled the development of an integrated system for stock renovation by considering computational fluid dynamics (CFD) and Mixed Reality (MR) in order to allow the simultaneous design of a building plan and thermal environment. The CFD analysis enables the simulation of the indoor thermal environment, including the effects of daylight and ventilation. The MR system visualizes the simulation results intuitively and makes renovation projects perform in a very efficient manner with regard to various stakeholders. In addition, a new CFD animation generation method is proposed in MR system, in order for users to consider the entirety of changes in the thermal environment.
keywords thermal environment; computational fluid dynamics (CFD); mixed reality (MR); daylight; ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_424
id acadia18_424
authors Bucklin, Oliver; Drexler, Hans; Krieg, Oliver David; Menges, Achim
year 2018
title Integrated Solid Timber. A multi-requisite system for the computational design,fabrication, and construction of versatile building envelopes
doi https://doi.org/10.52842/conf.acadia.2018.424
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 424-433
summary The paper presents the development of a building system made from solid timber that fulfils the requirements of modern building skins while expanding the design possibilities through innovation in computational design and digital fabrication. Multiple strategies are employed to develop a versatile construction system that generates structure, enclosure and insulation while enabling a broad design space for contemporary architectural expression. The basic construction unit augments the comparatively high insulation values of solid timber by cutting longitudinal slits into beams, generating air chambers that further inhibit thermal conductivity. These units are further enhanced through a joinery system that uses advanced parametric modeling and computerized control to augment traditional joinery techniques. Prototypes of the system are tested at a building component level with digital models and physical laboratory tests. It is further evaluated in a demonstrator building to test development and further refine design, fabrication and assembly methods. Results are integrated into proposals for new methods of implementation. The results of the research thus far demonstrate the validity of the strategy, and continuing research will improve its viability as a building system.
keywords full paper, materials and adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaaderis2018_119
id ecaaderis2018_119
authors Georgiou, Odysseas
year 2018
title The Oval - a complex geometry BIM case study
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 141-150
keywords This paper documents the steps followed to design and construct an oval shaped, high rise structure in Limassol Cyprus. The author presents the developed computational framework which was purposely built to support multiple levels and disciplines of design, construction and digital fabrication leading to a successful delivery of a complex geometry project within time and budget. A fully informed model involving multi-disciplinary data ranging from its conception to its completion establishes a sustainable paradigm for the construction industry, mainly because of its single source of control as opposed to other precedents involving multiple models and information.
series eCAADe
email
last changed 2018/05/29 14:33

_id sigradi2018_1473
id sigradi2018_1473
authors Kimi Cogima, Camila; V. V. de Paiva, Pedro; Dezen-Kempter, Eloisa; G. De Carvalho, Marco Antonio
year 2018
title Digital scanning and BIM modeling for modern architecture preservation: the Oscar Niemeyer’s Church of Saint Francis of Assisi
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 457-462
summary The Building Information Modelling (BIM) technology enabled improvement in the design, construction and maintenance stages highly. In the field of existing buildings, including historical assets, this technology has not yet had the same impact. This paper presents a methodology to create an intelligent digital model for an outstanding building from modern architecture in Brazil using multiple reality-based technologies. The fusion of the different point cloud raw data generated a high-resolution Dense Surface Model (DSM), the base of an accurate and detailed parametric Model. This study demonstrated the potential of digital surveying, including low-cost sensors, and BIM for built heritage documentation.
keywords Reality-based surveying; Point cloud; As-is model; Building Information Modelling; Modern Heritage
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2023_10
id ecaade2023_10
authors Sepúlveda, Abel, Eslamirad, Nasim and De Luca, Francesco
year 2023
title Machine Learning Approach versus Prediction Formulas to Design Healthy Dwellings in a Cold Climate
doi https://doi.org/10.52842/conf.ecaade.2023.2.359
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 359–368
summary This paper presents a study about the prediction accuracy of daylight provision and overheating levels in dwellings when considering different methods (machine learning vs prediction formulas), training, and validation data sets. An existing high-rise building located in Tallinn, Estonia was considered to compare the best ML predictive method with novel prediction formulas. The quantification of daylight provision was conducted according to the European daylight standard EN 17037:2018 (based on minimum Daylight Factor (minDF)) and overheating level in terms of the degree-hour (DH) metric included in local regulations. The features included in the dataset are the minDF and DH values related to different combinations of design parameters: window-to-floor ratio, level of obstruction, g-value, and visible transmittance of the glazing system. Different training and validation data sets were obtained from a main data set of 5120 minDF values and 40960 DH values obtained through simulation with Radiance and EnergyPlus, respectively. For each combination of training and validation dataset, the accuracy of the ML model was quantified and compared with the accuracy of the prediction formulas. According to our results, the ML model could provide more accurate minDF/DH predictions than by using the prediction formulas for the same design parameters. However, the amount of room combinations needed to train the machine-learning model is larger than for the calibration of the prediction formulas. The paper discuss in detail the method to use in practice, depending on time and accuracy concerns.
keywords Optimization, Daylight, Thermal Comfort, Overheating, Machine Learning, Predictive Model, Dwellings, Cold Climates
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2018_046
id caadria2018_046
authors Lu, Siliang and Cochran Hameen, Erica
year 2018
title Integrated IR Vision Sensor for Online Clothing Insulation Measurement
doi https://doi.org/10.52842/conf.caadria.2018.1.565
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 565-573
summary As one of the most important building systems, HVAC plays a key role in creating a comfortable thermal environment. Predicted Mean Vote (PMV), an index that predicts the mean value of the votes of a large group of persons on the thermal sensation scale, has been adopted to evaluate the built environment. Compared to environmental factors, clothing insulation can be much harder to measure in the field. The existing research on real-time clothing insulation measurement mainly focuses on expensive infrared thermography (IR) cameras. Therefore, to ensure cost-effectiveness, the paper has proposed a solution consisting of a normal camera, IR and air temperature sensors and Arduino Nanos to measure clothing insulation in real-time. Moreover, the algorithm includes the initialization from clothing classification with pre-trained neural network and optimization of the clothing insulation calculation. A total of 8 tests have been conducted with garments for spring/fall, summer and winter. The current results have shown the accuracy of T-shirt classification can reach over 90%. Moreover, compared with the results with IR cameras and reference values, the accuracies of the proposed sensing system vary with different clothing types. Research shall be further conducted and be applied into the dynamic PMV-based HVAC control system.
keywords clothing insulation; skin temperature; clothing classification; IR temperature sensor; Optimization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_241
id caadria2018_241
authors Molina, Kalani and Park, Hyoung-June
year 2018
title Sparking Off Walkability - A Computational Approach of Urban Network Analysis on Walkability in TOD Neighborhoods
doi https://doi.org/10.52842/conf.caadria.2018.2.391
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 391-400
summary Existing and proposed Transit Oriented Development (TOD) neighborhoods of Waipahu Transit Center Station in Honolulu, Hawaii are revisited by a proposed computational approach of Urban Network Analysis (UNA). The four measures of UNA: reach, gravity, closeness, and straightness are employed for investigating walkability in these given urban neighborhoods. In each measure, 1) accessibility to transportation 2) intersections frequency, 3) residential building density, 4) commercial building density, and 5) Industrial buildings density are delineated and proposed as vital factors for improving planning and design decisions on walkability patterns around the TOD neighborhoods.
keywords Urban Network Analysis, Walkability, Transit Oriented Develoment
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_264
id caadria2018_264
authors Ren, Hui, Han, Yunsong and Sun, Cheng
year 2018
title transDATA: A Data Recording and Exchanging Plug-in for Architectural Computational Design
doi https://doi.org/10.52842/conf.caadria.2018.2.051
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 51-60
summary Building form has a profound influence on the green performance of buildings. And the modeling tools are one of the factors can affect the building forms which play an important role in the design process. Nowadays, parametric modeling tools become popular in the architectural area. However, the functions of data processing and data comparison cannot meet the current modeling data processing requirements which need to be improved urgently. This paper developed the transDATA, which is a plugin based on python to realize the data exchanging and data visualization functions between Grasshopper, Excel and the Figure of python. This plugin allows architects to compare the history design parameters of the building and help architects to select the most ideal scheme efficiently.
keywords TransDATA; Data processing; Data visualization; Computational design
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_928180 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002