CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 625

_id acadia18_156
id acadia18_156
authors Huang, Weixin; Zheng, Hao
year 2018
title Architectural Drawings Recognition and Generation through Machine Learning
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 156-165
doi https://doi.org/10.52842/conf.acadia.2018.156
summary With the development of information technology, the ideas of programming and mass calculation were introduced into the design field, resulting in the growth of computer- aided design. With the idea of designing by data, we began to manipulate data directly, and interpret data through design works. Machine Learning as a decision making tool has been widely used in many fields. It can be used to analyze large amounts of data and predict future changes. Generative Adversarial Network (GAN) is a model framework in machine learning. It’s specially designed to learn and generate output data with similar or identical characteristics. Pix2pixHD is a modified version of GAN that learns image data in pairs and generates new images based on the input. The author applied pix2pixHD in recognizing and generating architectural drawings, marking rooms with different colors and then generating apartment plans through two convolutional neural networks. Next, in order to understand how these networks work, the author analyzed their framework, and provided an explanation of the three working principles of the networks, convolution layer, residual network layer and deconvolution layer. Lastly, in order to visualize the networks in architectural drawings, the author derived data from different layer and different training epochs, and visualized the findings as gray scale images. It was found that the features of the architectural plan drawings have been gradually learned and stored as parameters in the networks. As the networks get deeper and the training epoch increases, the features in the graph become more concise and clearer. This phenomenon may be inspiring in understanding the designing behavior of humans.
keywords full paper, design study, generative design, ai + machine learning, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id sigradi2021_226
id sigradi2021_226
authors Pincheira, Milena, Alarcón, Catalina, Rivera, María Isabel and Martínez, Andrea
year 2021
title Daylighting and the Elderly: A Study of Daylight Accessibility and Envelope Retrofit in Southern Chile's Senior Home
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1333–1344
summary In the next 25 years, the elderly population will increase on average to 65 thousand people annually in Chile (INE, 2018). Their independent living is jeopardized partially for diminished visual capacity that difficult spatial perception. Although light does not correct vision impairment, adequate light levels can respond to the needs of older people as preventing visual errors. This study evaluates daylighting availability in an assisting living residence in a southern city in Chile. A quantitative approach resulted in the identification of envelope-retrofit strategies that allow achieving recommended levels of natural lighting, particularly in shared spaces where residents spend most of the day. The results show that it would be possible to achieve better light availability, as it also allows for a better understanding of the contributions of the building envelope. Finally, the study outlines recommendations for future retrofits that meet requirements for visual comfort for a growing senior population.
keywords Daylighting Accessibility, Senior Home, Daylighting Strategies, Visual Comfort, Computational Simulation.
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2022_398
id ecaade2022_398
authors Dzurilla, Dalibor and Achten, Henri
year 2022
title What’s Happening to Architectural Sketching? - Interviewing architects about transformation from traditional to digital architectural sketching as a communicational tool with clients
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 389–398
doi https://doi.org/10.52842/conf.ecaade.2022.1.389
summary The paper discusses 23 interviewed architects in practice about the role of traditional and digital sketching (human-computer interaction) in communication with the client. They were selected from 1995 to 2018 (the interval of graduation) from three different countries: the Czech Republic (CR), Slovakia (SR), Netherland (NR). To realize three blending areas that impact the approach to sketching: (I) Traditional hand and physical model studies (1995-2003). (II)Transition form - designing by hand and PC (2004–2017). (III) Mainly digital and remote forms of designing (2018–now). Interviews helped transform 31 “parameters of tools use” from the previous theoretical framework narrowed down into six main areas: (1) Implementation; (2)Affordability; (3)Timesaving; (4) Drawing support; (5) Representativeness; (6) Transportability. Paper discusses findings from interviewees: (A) Implementation issues are above time and price. (B) Strongly different understanding of what digital sketching is. From drawing in Google Slides by mouse to sketching in Metaverse. (C) Substantial reduction of traditional sketching (down to a total of 3% of the time) at the expense of growing responsibilities. (D) 80% of respondents do not recommend sketching in front of the client. Also, other interesting findings are further described in the discussion.
keywords Architectural Sketch, Digital Sketch, Effective Visual Communication
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2018_162
id caadria2018_162
authors Hawton, Dominic, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Shared Immersive Environments for Parametric Model Manipulation - Evaluating a Workflow for Parametric Model Manipulation from Within Immersive Virtual Environments
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
doi https://doi.org/10.52842/conf.caadria.2018.1.483
summary Virtual reality (VR) and augmented reality (AR) provide designers with new visual mediums through which to communicate their designs. There is great potential for these mediums to positively augment current visual communication methods by improving remote collaboration. Enabling designers to interact with familiar computational tools through external virtual interfaces would allow them to both calibrate design parameters and visualise parametric outcomes from within the same immersive virtual environment. The current research outlines a workflow for parametric manipulation and mesh replication between immersive applications developed in the Unity game engine and McNeel's Grasshopper plugin. This paper serves as a foundation for future research into integrating design tools with external VR and AR applications in an effort of enhancing remote collaborative designs.
keywords Augmented Reality; Virtual Reality; Parametric Design; Procedural; Grasshopper
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2018_310
id ecaade2018_310
authors Jabi, Wassim, Aish, Robert, Lannon, Simon, Chatzivasileiadi, Aikaterini and Wardhana, Nicholas Mario
year 2018
title Topologic - A toolkit for spatial and topological modelling
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 449-458
doi https://doi.org/10.52842/conf.ecaade.2018.2.449
summary This paper describes non-manifold topology (NMT) as it relates to the field of architecture and presents Topologic, an open-source software modelling library enabling hierarchical and topological representations of architectural spaces, buildings and artefacts through NMT. Topologic is designed as a core library and additional plugins to visual data flow programming (VDFP) software. The software architecture and class hierarchy are explained and two domain-specific demonstrative tools (TopologicEnergy and TopologicStructure) are presented to illustrate how third-party software developers could use Topologic to build their own solutions. The paper concludes with a reflection on the benefits and limitations of NMT in the design and simulation workflows and outlines future work.
keywords Non-manifold topology; Visual data flow programming; Building performance simulation; Structural analysis; Computational design; Building information modelling
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_232
id acadia18_232
authors Kilian, Axel
year 2018
title The Flexing Room Architectural Robot. An Actuated Active-Bending Robotic Structure using Human Feedback
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 232-241
doi https://doi.org/10.52842/conf.acadia.2018.232
summary Advances in autonomous control of object-scale robots, both anthropomorphic and vehicular, are posing new human–machine interface challenges. In architecture, very few examples of autonomous inhabitable robotic architecture exist. A number of factors likely contribute to this condition, among them the scale and cost of architectural adaptive systems, but on a more fundamental conceptual level also the questions of how architectural robots would communicate with their human inhabitants. The Flexing Room installation is a room-sized actuated active-bending skeleton structure. It uses rudimentary social feedback by counting people to inform its behavior in the form of actuated poses of the room enclosure. An operational full-scale prototype was constructed and tested. To operate it no geometric-based simulation was used; the only communication between computer and structure was in sending values for the air pressure settings and in gathering sensor feedback. The structure’s physical state was resolved through the embodied computation of its interconnected parts, and the people-counting sensor feedback influences its next action. Future work will explore the development of learning processes to improve the human–machine coexistence in space.
keywords full paper, fabrication & robotics, non-production robotics, materials/adaptive systems, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_317
id ecaade2018_317
authors Kontovourkis, Odysseas and Doumanidis, Constantine C
year 2018
title ICARUS Project - An Open Source Platform for Computer Programming in Architectural Teaching and Research
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 341-350
doi https://doi.org/10.52842/conf.ecaade.2018.1.341
summary This paper, presents an ongoing work entitled ICARUS, an abbreviation for 'Integrating Computerized ARchitecture with USers'. The aim of this work is to develop an open source platform for computer programming implemented in architecture, for teaching and research. In particular, the platform provides the framework for a simplified and user friendly textual programming methodology for the needs of our architectural institution. It consists of several modules like coding, plug-in and repository development, targeting to be publicly available in the future. The platform is created based on the Python programming language, which is run in Grasshopper, a plug-in for Rhino 3D. In the first phase of ICARUS development, several case studies within the framework of a postgraduate course are conducted, aiming at providing an overview of its potentials, limitations and generally, its impact on establishing a useful methodology for algorithmic thinking among students with little or no prior computer programming skills.
keywords Computer programming; Open source platform; Parametric design; Plug-in development; Algorithmic thinking
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2018_293
id caadria2018_293
authors Lee, Jisun and Lee, Hyunsoo
year 2018
title The Visible and Invisible Network of a Self-Organizing Town - Agent-Based Simulation for Investigating Urban Development Process
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 411-420
doi https://doi.org/10.52842/conf.caadria.2018.2.411
summary This study applies self-organization as a methodology to understand the complex process of city networks caused by interactions between spatial structures and individual behaviors. The agent-based simulations have been conducted to investigate the visible and invisible networks understanding the self-organized aspects of city development processes. To develop optimal future networks providing connectivity and accessibility this study investigates spatial network configurations from internal individual behavior and movement. As results, it was found that the spatial configurations of the agent movement trails match to the current district boundaries and the similar network patterns were seen in various control values of agent behavior settings. This study contributes to searching out the hierarchy of network structures which is an important factor for re-planning of the way system.
keywords Agent-based simulation; network analysis ; self organization ; urban development process ; Physarum polycephalum
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_018
id caadria2018_018
authors Lin, Yuming and Huang, Weixin
year 2018
title Social Behavior Analysis in Innovation Incubator Based on Wi-Fi Data - A Case Study on Yan Jing Lane Community
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 197-206
doi https://doi.org/10.52842/conf.caadria.2018.2.197
summary Innovation incubator is an emerging kind of office space which focuses on promoting social interaction in the space. From the perspective of environmental behavior, the complex relationship between a particular space form and the social interactions is well worth exploring. Based on Wi-Fi positioning data, this paper examined the spatial and temporal behavior in innovation incubators. Using the interdisciplinary social networks analysis, this paper further analyzed the social interactions in this space, mining out social structures such as gathering and community, and analyzing the relationship between these structures and spaces. The result shows that human behavior in innovation incubators has some interesting characteristics, and the social structures are closely linked with the functional area of innovation incubator. This paper provides a new perspective and introduces interdisciplinary approaches to study the social behaviors in a particular space form, which has great potential in future research.
keywords environmental behavior study; social behavior analysis; innovation incubator; Wi-Fi IPS; social network
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_234
id ecaade2018_234
authors Loh, Paul, Leggett, David and Prohasky, Daniel
year 2018
title CNC Adjustable Mould to Eliminate Waste in Concrete Casting
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 735-742
doi https://doi.org/10.52842/conf.ecaade.2018.1.735
summary Fabricating complex curvature in concrete panel typically required unique one-off formwork which is usually computer numerically controlled (CNC) milled, generating enormous waste as a by-product. What if, we can produce complex curvature in concrete with minimal or no immediate construction waste? This paper presents a novel machine designed by a team of architects and engineer to eliminate waste in concrete casting. Using a hyperbolic paraboloid geometric model, the machine produces variable shape using a single mould design reducing waste and cost to the casting process. The paper discussed the design framework of the system and its fabrication workflow. The outcome is digitally scanned and verified to satisfy industry standard. The paper concludes by reviewing the application of the system and highlighting the need for future research into digital fabrication and design that is less wasteful and waste conscious to better the process of constructing our built environment.
keywords Digital fabrication; Concrete casting; Adjustable mould
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
doi https://doi.org/10.52842/conf.acadia.2020.1.574
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2018_198
id caadria2018_198
authors Reinhardt, Dagmar, Candido, Christhina, Cabrera, Densil, Wozniak-O'Connor, Dylan, Watt, Rodney, Bickerton, Chris, Titchkosky, Ninotschka and Houda, Maryam
year 2018
title Onsite Robotic Fabrication for Flexible Workspaces - Towards Design and Robotic Fabrication of an Integrated Responsive Ceiling System for A Workspace Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 59-68
doi https://doi.org/10.52842/conf.caadria.2018.1.059
summary Open, flexible workspaces were introduced decades ago, but architectural design approaches to ceiling systems have not changed substantially. This paper discusses the development of strategies and prototypes for a lightweight, integrated ceiling structure that is robotically woven. Through geometrically complex, fibre-reinforced building elements that are produced onsite, a new distribution system for data and light can be provided and support individual and multi-group collaborations in an contemporary open-plan office for maximum flexibility. The paper introduces applied design research with case studies that test robotic weaving on an architectural ceiling. The second part contextualises the presented work by linking it to workspace scenarios and an on-site robotic process with a resulting data distribution that is designed to produce degrees of freedom for high flexibility in use, allowing occupants to organise the workspace layout autonomously so that workflow constellations in different teams can be adequately expressed through space. The paper concludes with a discussion of a framework for robotic methods developed for the carbon-fibre overhead weaving processes, followed by conclusions and outlook towards future potentials.
keywords open collaborative workspace; robotic onsite weaving; carbon fiber; integrated ceiling systems
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2018_361
id ecaade2018_361
authors Schneider, Sven, Kuliga, Saskia, Weiser, René, Kammler, Olaf and Fuchkina, Ekaterina
year 2018
title VREVAL - A BIM-based Framework for User-centered Evaluation of Complex Buildings in Virtual Environments
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 833-842
doi https://doi.org/10.52842/conf.ecaade.2018.2.833
summary The design of buildings requires architects to anticipate how their future users will experience and behave in them. In order to do this objectively and systematically user studies in Virtual Environments (VEs) are a valuable method. In this paper, we present a framework for setting up, conducting and analysing user studies in VEs. The framework is integrated in the architectural design process by using BIM as a common modeling and visualisation platform. In order to define the user studies simple and flexible for the individual purposes we followed a modular concept. Modules thereby refer to different kinds of user study methods. Currently we developed three modules (Wayfinding, Spatial Experience and Qualitative Annotations), each having their individual requirements regarding their setup, interaction method and visualisation of results. In the course of a architectural design studio, students applied this framework to evaluate their building designs from a user perspective.
keywords Pre-Occupancy Evaluation; Virtual Reality; User-centered Design; Building Information Modeling; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2020_121
id ecaade2020_121
authors Trossman Haifler, Yaala and Fisher-Gewirtzman, Dafna
year 2020
title Urban Well-Being in Dense Cities - The influence of densification strategies, experiment in virtual reality
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 323-332
doi https://doi.org/10.52842/conf.ecaade.2020.1.323
summary Urban morphology significantly impacts resident's well-being. This study examines the impact of urban environments on the sense of well-being, using virtual reality as a research environment. Most of the world's population already live in urban localities; and it is expected that in two decades, more than 70% of the total population of the planet will be city dwellers(UN 2018). This study examines the impact of various urban configurations on dwellers well-being. Participants were presented with simulated pedestrian movement through 24 virtual urban environments. The environments differed by density level, spatial configurations, vegetation, and commerce. Participants assessed each alternative through structured questionnaires. It has been found that the density and presence of vegetation and commerce in the urban area have a significant impact on the subject's well-being in urban environments. extreme levels of densification have a negative effect on subjects' feelings, but vegetation and commerce, especially at the high levels of density, can improve them. In this research we established the framework for planning principles that can improve urban densification processes. An understanding of the wellbeing of urban dwellers, and the parameters that can influence this, will help urban designers and planners in creating better urbanized future environments.
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia18_342
id acadia18_342
authors Wu, Kaicong; Kilian, Axel
year 2018
title Robotic Equilibrium: Scaffold Free Arch Assemblies
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 342-349
doi https://doi.org/10.52842/conf.acadia.2018.342
summary Compression only arch structures are structurally highly efficient in force equilibrium. However, the material efficiency is offset by the traditional use of scaffolds to position materials and counter the out of equilibrium forces during assembly. We introduce a method of sequentially assembling compression only structures without a scaffold by robotically maintaining the compression equilibrium in every step. A two-arm collaborative robotic setup was used to maintain force equilibrium throughout arch assembly with the arms taking turns first hot wire cutting and placing blocks and providing a temporary scaffold to support the arch end point.

To test the approach, a single catenary arch was generated using form-finding techniques and sequentially built from foam blocks. Moving forward we show the relationship between the joint valence (largest number of joined branches) of a multi-branched structure and the minimum number of robotic arms required for assembly using our initial technique. With only two robotic arms available, the technique was further developed to reduce the required number of arms per arch branch from two to one by attaching caterpillar tracks at the block supporting end effector. This allows a human to load the next block and the arm to move forward along the arch while maintaining equilibrium. Results show that robotic equilibrium scaffold free arch assembly is possible and can reduce scaffold waste and maintain the material efficiency of compression only structures. Future work will explore further applications of assistive robotics in construction replacing static construction aids with dynamic sensory feedback of equilibrium forces.

keywords work in progress, collaborative sequential assembly, robotic equilibrium, compression only structures, form finding
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id lasg_whitepapers_2019_063
id lasg_whitepapers_2019_063
authors Börner, Katy; and Andreas Bueckle
year 2019
title Envisioning Intelligent Interactive Systems; Data Visualizations for Sentient Architecture
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.063 - 088
summary This paper presents data visualizations of an intelligent environment that were designed to serve the needs of two stakeholder groups: visitors wanting to understand how that environment operates, and developers interested in optimizing it. The visualizations presented here were designed for [Amatria], a sentient sculpture built by the Living Architecture Systems Group (LASG) at Indiana University Bloomington, IN, USA, in the spring of 2018. They are the result of an extended collaboration between LASG and the Cyberinfrastructure for Network Science Center (CNS) at Indiana University. We introduce [Amatria], review related work on the visualization of smart environments and sentient architectures, and explain how the Data Visualization Literacy Framework (DVL-FW) can be used to develop visualizations of intelligent interactive systems (IIS) for these two stakeholder groups.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2020_098
id caadria2020_098
authors Davidova, Marie and McMeel, Dermott
year 2020
title Codesigning with Blockchain for Synergetic Landscapes - The CoCreation of Blockchain Circular Economy through Systemic Design
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 333-342
doi https://doi.org/10.52842/conf.caadria.2020.2.333
summary The paper is exploring methodology within the work in progress research by design through teaching project called 'Synergetic Landscapes'. It discusses codesign and cocreation processes that are crossing the academia, NGOs and applied practice within so called 'real life codesign laboratory' (Davidová, Pánek, & Pánková, 2018). This laboratory performs in real time and real life environment. The work investigates synergised bio-digital (living, non-living, physical, analogue, digital and virtual) prototypical interventions in urban environment that are linked to circular economy and life cycles systems running on blockchain. It represents a holistic systemic interactive and performing approach to design processes that involve living, habitational and edible, social and reproductive, circular and token economic systems. Those together are to cogenerate synergetic landscapes.
keywords codesign; blockchain; systemic design; prototyping; bio-digital design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_126
id caadria2018_126
authors Khean, Nariddh, Kim, Lucas, Martinez, Jorge, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title The Introspection of Deep Neural Networks - Towards Illuminating the Black Box - Training Architects Machine Learning via Grasshopper Definitions
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 237-246
doi https://doi.org/10.52842/conf.caadria.2018.2.237
summary Machine learning is yet to make a significant impact in the field of architecture and design. However, with the combination of artificial neural networks, a biologically inspired machine learning paradigm, and deep learning, a hierarchical subsystem of machine learning, the predictive capabilities of machine learning processes could prove a valuable tool for designers. Yet, the inherent knowledge gap between the fields of architecture and computer science has meant the complexity of machine learning, and thus its potential value and applications in the design of the built environment remain little understood. To bridge this knowledge gap, this paper describes the development of a learning tool directed at architects and designers to better understand the inner workings of machine learning. Within the parametric modelling environment of Grasshopper, this research develops a framework to express the mathematic and programmatic operations of neural networks in a visual scripting language. This offers a way to segment and parametrise each neural network operation into a basic expression. Unpacking the complexities of machine learning in an intermediary software environment such as Grasshopper intends to foster the broader adoption of artificial intelligence in architecture.
keywords machine learning; neural network; action research; supervised learning; education
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_609375 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002