CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 621

_id caadria2018_343
id caadria2018_343
authors Kalantar, Negar and Borhani, Alireza
year 2018
title Informing Deformable Formworks - Parameterizing Deformation Behavior of a Non-Stretchable Membrane via Kerfing
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 339-348
doi https://doi.org/10.52842/conf.caadria.2018.2.339
summary The process for constructing freeform buildings composed of many non-repetitive shapes and waste-free formwork systems remains relatively unexplored. This research reviews a method for fabricating complex double-curved shapes without utilizing single-use formworks. This work answers questions regarding the manufacturing of these shapes in an environmentally-friendly and economic fashion. The proposed method, called a "transformative formwork," could replace state-of-the-art CNC-milled molds and is potentially suitable for large-scale construction. The transformative formwork uses a stretchable membrane or "interpolation layer" that can be manipulated into any curved surface by using vertical bars capable of being rearranged into different heights. Here, to accurately generate most of the smooth, double-curved surfaces, laser kerfing is used for bending interpolation layer into almost any complex shape. A parametric model simplifies local or global changes to the density of the kerfing patterns, modifying the deformation behavior of the layer. Several kerfed interpolation layers produced for four transformative formworks showed that the application of this method.
keywords Transformative Formwork, Interpolation Layer, Relief-cut Patterns, Positive & Negative Gaussian Curvatures, Interlocking Archimedean Spiral-Patterns, Kerfing
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2023_362
id caadria2023_362
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldabous, Rahaf, Aldaboos, Sarah and Lopez Rodriguez, Alvaro
year 2023
title Fabrication of Complex Clay Structures Through an Augmented Reality Assisted Platform
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 413–422
doi https://doi.org/10.52842/conf.caadria.2023.1.413
summary The relationship between clay manufacturing and architectural design has a long trajectory that has been explored since the early 2000s. From a 3D printing or assembly perspective, using clay in combination with automated processes in architecture to achieve computational design solutions is well established. (Yuan, Leach & Menges, 2018). Craft-based clay art, however, still lacks effective computational design integration. With the improvement of Augmented Reality (AR) technologies (Driscoll et al., 2017) and the appearance of digital platforms, new opportunities to integrate clay manufacturing and computational design have emerged. The concept of digitally transferring crafting skills, using holographic guidance and machine learning, could make clay crafting accessible to more workers while creating the potential to share and exchange digital designs via an open-source manufacturing platform. In this context, this research project explores the potential of integrating computational design and clay crafting using AR. Moreover, it introduces a platform that enables AR guidance and the digital transfer of fabrication skills, allowing even amateur users with no prior making experience to produce complex clay components.
keywords Computer vision, Distributed manufacturing, Augmented craftsmanship, Augmented reality, Real-time modification, Hololens
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2018_097
id caadria2018_097
authors Park, Daekwon
year 2018
title Adaptive THERM-SKIN - Tunable Cellular Materials for Adaptive Thermal Control
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 309-318
doi https://doi.org/10.52842/conf.caadria.2018.2.309
summary This research investigates a tunable cellular material system that can alternate between a thermal insulator and a heat exchanger. The capability to morph between these two distinctive thermal functions provide opportunities to create novel material systems that can dynamically adapt to its environment. The operating principle is to strategically deform the cellular material so that the shape and size of the cavities are optimized for the intended thermal function. In the compressed state, the cavity spaces are narrow enough to suppress convection heat transfer and utilize the low thermal conductivity property of still air. The expanded state has the optimum cavity dimensions for air to move through the system and exchange heat with the material system. The first stage of the research utilizes the existing thermal optimization studies for establishing the analytical model for predicting the performance of each state as a function of the geometric features. The second stage constructs a parametric model using the predictions, and two separate material architectures were designed and fabricated based on it. The calibrated analytical model can be utilized in designing various dynamic thermal interaction systems at a wide range of conditions and parameters (e.g., climate, temperature, scale, and material).
keywords Dynamic Thermal Insulation; Cellular Materials; Thermal Design and Optimization; Adaptive Materials
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2018_260
id ecaade2018_260
authors Kallegias, Alexandros
year 2018
title Design by Computation - A material driven study
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 279-284
doi https://doi.org/10.52842/conf.ecaade.2018.2.279
summary The paper aims to address methods of creating a system for design through material studies that are employed as feedback on a computational digital model. The case study described in this paper is the output of an exploration that has investigated physical transformation, interaction and wood materiality over the period of two weeks of the international architecture programme AA Athens Visiting School in Greece. Real-time performative form-responsive methods based on bending and stretching have been developed and simulated in an open-source programming environment. The output of the simulation has been informed by the results of material tests that took place in parallel and have served as inputs for the fine-tuning of the simulation. Final conclusions were made possible from these explorations that enabled the fabrication of a prototype using wood veneer at one-to-one scale. From a pedagogical aspect, the research main focus is to improve the quality of architectural education by learning through making. This is made possible using advanced computational techniques and coupling them with material studies towards an integrated system for architectural prototypes within a limited time frame.
keywords materiality; computation; 1:1 scale prototyping; simulation; fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_232
id acadia18_232
authors Kilian, Axel
year 2018
title The Flexing Room Architectural Robot. An Actuated Active-Bending Robotic Structure using Human Feedback
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 232-241
doi https://doi.org/10.52842/conf.acadia.2018.232
summary Advances in autonomous control of object-scale robots, both anthropomorphic and vehicular, are posing new human–machine interface challenges. In architecture, very few examples of autonomous inhabitable robotic architecture exist. A number of factors likely contribute to this condition, among them the scale and cost of architectural adaptive systems, but on a more fundamental conceptual level also the questions of how architectural robots would communicate with their human inhabitants. The Flexing Room installation is a room-sized actuated active-bending skeleton structure. It uses rudimentary social feedback by counting people to inform its behavior in the form of actuated poses of the room enclosure. An operational full-scale prototype was constructed and tested. To operate it no geometric-based simulation was used; the only communication between computer and structure was in sending values for the air pressure settings and in gathering sensor feedback. The structure’s physical state was resolved through the embodied computation of its interconnected parts, and the people-counting sensor feedback influences its next action. Future work will explore the development of learning processes to improve the human–machine coexistence in space.
keywords full paper, fabrication & robotics, non-production robotics, materials/adaptive systems, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id caadria2018_297
id caadria2018_297
authors Kim, Eonyong
year 2018
title Field Survey System for Facility Management Using BIM Model - IoT Management for Facility Management
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 535-544
doi https://doi.org/10.52842/conf.caadria.2018.2.535
summary Combining IoT technology with the BIM paradigm can enhance the data collection that BIM strives for by enabling real-time monitoring of building conditions. This data collection can be used very effectively for managing facilities. However, many IoT devices must be installed in buildings to achieve such results and therefore, a management system is required. The purpose of this study is to suggest an IoT management system that uses the drawing information extracted from a BIM model to allow effective management from initial installation of IoT devices to maintenance. In the pursuit of this purpose, a converter and an IoT device which developed in the research is used. The converter extracts space information and 2D floor drawing from BIM model and the IoT device is developed based on ESP 8266 chip which consist of one computer and WIFI module. To store the data which collected by the IoT devices, IoT service of AWS(Amazon Web Service) is used.
keywords Facility Management; IoT; Management System; BIM
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2022_297
id sigradi2022_297
authors Roco, Miguel
year 2022
title ePortfolio as a Techno-pedagogical Strategy for Networked Learning in the Architectural Design Studio
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1075–1086
summary This paper shows and describes the experience of the ePortfolio implementation in architectural training for promoting Networked Learning (NL). The aim was to analyze the potential of ePortfolio, as a techno-pedagogical strategy to develop and enhance connections and learning integrations among students who belong in the second year of the Architectural Design Studio. The research had a descriptive methodology with a mixed approach over fourteen cohorts of the same training cycle across the years 2012 to 2018, considering a total of 336 students. The results reveal that ePortfolio, conceived inside the techno-pedagogical model, articulates a set of learning connections between students and learning situations and promotes the construction of an active collaboration net, which evidence NL development in the formative process.
keywords ePortfolio, Networked Learning, ICT, Architectural Teaching, Techno-pedagogy
series SIGraDi
email
last changed 2023/05/16 16:57

_id acadia18_146
id acadia18_146
authors Rossi, Gabriella; Nicholas, Paul
year 2018
title Re/Learning the Wheel. Methods to Utilize Neural Networks as Design Tools for Doubly Curved Metal Surfaces
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 146-155
doi https://doi.org/10.52842/conf.acadia.2018.146
summary This paper introduces concepts and computational methodologies for utilizing neural networks as design tools for architecture and demonstrates their application in the making of doubly curved metal surfaces using a contemporary version of the English Wheel. The research adopts an interdisciplinary approach to develop a novel method to model complex geometric features using computational models that originate from the field of computer vision.

The paper contextualizes the approach with respect to the current state of the art of the usage of artificial neural networks both in architecture and beyond. It illustrates the cyber physical system that is at the core of this research, with a focus on the employed neural network–based computational method. Finally, the paper discusses the repercussions of these design tools on the contemporary design paradigm.

keywords full paper, ai & machine learning, digital craft, robotic production, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2023_10
id ecaade2023_10
authors Sepúlveda, Abel, Eslamirad, Nasim and De Luca, Francesco
year 2023
title Machine Learning Approach versus Prediction Formulas to Design Healthy Dwellings in a Cold Climate
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 359–368
doi https://doi.org/10.52842/conf.ecaade.2023.2.359
summary This paper presents a study about the prediction accuracy of daylight provision and overheating levels in dwellings when considering different methods (machine learning vs prediction formulas), training, and validation data sets. An existing high-rise building located in Tallinn, Estonia was considered to compare the best ML predictive method with novel prediction formulas. The quantification of daylight provision was conducted according to the European daylight standard EN 17037:2018 (based on minimum Daylight Factor (minDF)) and overheating level in terms of the degree-hour (DH) metric included in local regulations. The features included in the dataset are the minDF and DH values related to different combinations of design parameters: window-to-floor ratio, level of obstruction, g-value, and visible transmittance of the glazing system. Different training and validation data sets were obtained from a main data set of 5120 minDF values and 40960 DH values obtained through simulation with Radiance and EnergyPlus, respectively. For each combination of training and validation dataset, the accuracy of the ML model was quantified and compared with the accuracy of the prediction formulas. According to our results, the ML model could provide more accurate minDF/DH predictions than by using the prediction formulas for the same design parameters. However, the amount of room combinations needed to train the machine-learning model is larger than for the calibration of the prediction formulas. The paper discuss in detail the method to use in practice, depending on time and accuracy concerns.
keywords Optimization, Daylight, Thermal Comfort, Overheating, Machine Learning, Predictive Model, Dwellings, Cold Climates
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2018_016
id caadria2018_016
authors Zahedi, Ata and Petzold, Frank
year 2018
title Utilization of Simulation Tools in Early Design Phases Through Adaptive Detailing Strategies
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2018.2.011
summary Decisions taken at early stages of building design have a significant effect on the planning steps for the entire lifetime of the project as well as the performance of the building throughout its lifecycle (MacLeamy 2004). Building Information Modelling (BIM) could bring forward and enhance the planning and decision-making processes by enabling the direct reuse of data hold by the model for diverse analysis and simulation tasks (Borrmann et al. 2015). The architect today besides a couple of simplified simulation tools almost exclusively uses his know-how for evaluating and comparing design variants in the early stages of design. This paper focuses on finding new ways to facilitate the use of analytical and simulation tools during the important early phases of conceptual building design, where the models are partially incomplete. The necessary enrichment and proper detailing of the design model could be achieved by means of dialogue-based interaction concepts with analytical and simulation tools through adaptive detailing strategies. This concept is explained using an example scenario for design process. A generic description of the aimed dialog-based interface to various simulation tools will also be discussed in this paper using an example scenario.
keywords BIM; Early Design Stages; Adaptive Detailing ; Communication Protocols; Design Variants
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac201816205
id ijac201816205
authors Faircloth,Billie; Ryan Welch, Martin Tamke, Paul Nicholas, Phil Ayres, Yulia Sinke, Brandon Cuffy and Mette Ramsgaard Thomsen
year 2018
title Multiscale modeling frameworks for architecture: Designing the unseen and invisible with phase change materials
source International Journal of Architectural Computing vol. 16 - no. 2, 104-122
summary Multiscale design and analysis models promise a robust, multimethod, multidisciplinary approach, but at present have limited application during the architectural design process. To explore the use of multiscale models in architecture, we develop a calibrated modeling and simulation platform for the design and analysis of a prototypical envelope made of phase change materials. The model is mechanistic in nature, incorporates material-scale and precinct scale-attributes, and supports the design of two- and three-dimensional phase change material geometries informed by heat transfer phenomena. Phase change material behavior, in solid and liquid states, dominates the visual and numerical evaluation of the multiscale model. Model calibration is demonstrated using real-time data gathered from the prototype. Model extensibility is demonstrated when it is used by designers to predict the behavior of alternate envelope options. Given the challenges of modeling phase change material behavior in this multiscale model, an additional multiple linear regression model is applied to data collected from the physical prototype in order to demonstrate an alternate method for predicting the melting and solidification of phase change materials.
keywords Multiscale modeling, mechanistic modeling, heat transfer modeling, phase change materials, model validation
series journal
email
last changed 2019/08/07 14:03

_id sigradi2018_1619
id sigradi2018_1619
authors Agirbas, Asli
year 2018
title Creating Non-standard Spaces via 3D Modeling and Simulation: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1051-1058
summary Especially in the film industry, architectural spaces away from Euclidean geometry are brought to foreground. The best environment in which such spaces can be designed, is undoubtedly the 3D modeling environment. In this study, an experimental study was carried out on the creation of alternative spaces with undergraduate architectural students. Via using 3D modeling and various simulation techniques in the Maya software, students created spaces, which were away from the traditional architectural spaces. Thus, in addition to learning the 3D modeling software, architectural students learned to use animation and simulation as a part of design, not just as a presentation tool, and opening up new horizons for non-standard spaces was provided.
keywords 3D Modeling; Simulation; Animation; CAAD; Maya; Non-standard spaces
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_029
id caadria2018_029
authors Ayoub, Mohammed
year 2018
title Adaptive Façades:An Evaluation of Cellular Automata Controlled Dynamic Shading System Using New Hourly-Based Metrics
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 83-92
doi https://doi.org/10.52842/conf.caadria.2018.2.083
summary This research explores utilizing Cellular Automata patterns as climate-adaptive dynamic shading systems to mitigate the undesirable impacts by excessive solar penetration in cooling-dominant climates. The methodological procedure is realized through two main phases. The first evaluates all 256 Elementary Cellular Automata possible rules to elect the ones with good visual and random patterns, to ensure an equitable distribution of the natural daylight in internal spaces. Based on the newly developed hourly-based metrics, simulations are conducted in the second phase to evaluate the Cellular Automata controlled dynamic shadings performance, and formalize the adaptive façade variation logic that maximizes daylighting and minimizes energy demand.
keywords Adaptive Façade; Dynamic Shading; Cellular Automata; Hourly-Based Metric; Performance Evaluation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
doi https://doi.org/10.52842/conf.caadria.2018.2.185
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
doi https://doi.org/10.52842/conf.acadia.2018.176
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id sigradi2018_1329
id sigradi2018_1329
authors Campos Fialho, Beatriz; A. Costa, Heliara; Logsdon, Louise; Minto Fabrício, Márcio
year 2018
title CAD and BIM tools in Teaching of Graphic Representation for Engineering
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 961-968
summary BIM technology has represented an advance and a break of the design process’ paradigm, impacting both academia and construction market. Reporting a didactic experience in the Civil Engineering graduation, this article aims to understand the teaching and learning process of graphic representation, by using CAD and BIM tools. The research included Literature Review and Empirical Study, whose data collection was based on the application of questionnaires, practical exercises and theoretical test with the students. As a contribution, we highline the complementary nature of the tools and the potentialities of BIM for teaching graphic representation.
keywords Graphic Representation; CAD System Education; CAE System Education. BIM
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_118
id caadria2018_118
authors Chen, Zi-Ru, Liao, Chien-Jung and Chu, Chih-Hsing
year 2018
title An Assembly Guidance System of Tou Kung Based on Augmented Reality
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 349-358
doi https://doi.org/10.52842/conf.caadria.2018.1.349
summary Tou kung represent Chinese architecture. Due to the difficulty of learning from ancient books, some develop 3D assembly models. Still, there are limits while using 2D images for assembly instructions. The purpose of this study is to explore whether the application of AR technology can guide the process of tou kung assembly and address the recognition gap between paper illustrations and the physical assembly process. The method is to observes the user's tou kung assembly behavior and performance. Then the study proposed an dynamic simulation AR guidance system to help people not only understand the structure, but also the culture behind to reach the goal of education promotion.
keywords Augmented Reality; Tou-Kung; assembly
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_056
id caadria2018_056
authors Chirkin, Artem, Pishniy, Maxim and Sender, Arina
year 2018
title Generilized Visibility-Based Design Evaluation Using GPU
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
doi https://doi.org/10.52842/conf.caadria.2018.2.483
summary Visibility plays an important role in perception and use of an urban design, and thus often becomes a target of design analysis. This work presents a fast method of evaluating various visibility-based design characteristics, such as isovists or insolation exploiting the GPU rendering pipeline and compute shaders. The proposed method employs a two-stage algorithm on each point of interest. First, it projects the visible space around a vantage point onto an equirectangular map. Second, it folds the map using a flexibly defined function into a single value that is associated with the vantage point. Being executed on a grid of points in a 3D scene, it can be visualized as a heat map or utilized by another algorithm for further design analysis. The developed system provides nearly real-time analysis tools for an early-stage design process to a broad audience via web services.
keywords design analysis; design evaluation; GPU; isovist; insolation
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
doi https://doi.org/10.52842/conf.caadria.2018.1.205
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_779208 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002