CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id sigradi2018_1348
id sigradi2018_1348
authors Bertuzzi, Juan Pablo; Chiarella, Mauro
year 2018
title Gamification of Educational Environments through Virtual Reality Platforms
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 975-979
summary This paper proposes the experimentation of new information and communication technologies through the development of an experimental and interactive virtual reality application, where educational content and game mechanics are incorporated, in order to generate interactivity within a digital 3D space and promote academic exchange in an innovative way. This project aims to the exploration of an open 3D digital environment, where the modeling is inspired by some sector of the physical space of the authors’ university, compatible for the incorporation of smart objects, avatars and a dialogue/activities system that deals with several educational topics.
keywords Avatar; Gamification; Hybrid worlds; Techno-politics; Virtual reality
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_375
id ecaade2018_375
authors Pienaru, Meram-Irina
year 2018
title The City as a Playground - Game tools for interactive planning
doi https://doi.org/10.52842/conf.ecaade.2018.2.679
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 679-686
summary The emergence of a data space (Big Data and IoT) and, with it, the proliferation of communication means, led many scholars to describe the city through a series of concepts like the informational city, the intelligent city or the cybercity, all of them being characterized by a strong networked consciousness (Castells, Graham, Boyer). The hypothesis of this paper is that game methodology is now gaining momentum and can act as enabler of smarter communities by an increasing access to data infrastructures. This is why the city can be seen as a series of connected playgrounds where interactive tools can support citizen engagement and decision making processes. It does so by going through relevant theoretical background on gamification in the urban context and best practices, to finally describe two student projects developed at CHORA Conscious City, TU Berlin. The two projects are experimental and explore the capabilities of interactive tools in order to support planning processes.
keywords Gamification; Interactive tools; Networked consciousness; Intelligent communities
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2018_264
id ecaade2018_264
authors Qabshoqa, Mohammad
year 2018
title Virtual Place-Making - The Re-discovery of Architectural Places through Augmented Play - A playful emergence between the real and unreal
doi https://doi.org/10.52842/conf.ecaade.2018.1.451
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 451-458
summary This paper introduces the concept of Virtual Place-making through Urban Gamification for architects and designers as a potential application and approach in architecture and urban design. This introduction will be achieved through introducing Augmented Play and Urban Gamification; identifying the urban gamification components based on the game Pokémon Go; exploring the effect of augmented reality games on the experience of architectural and urban spaces; identifying the role of augmented urban gamification in rediscovering cities and redefining architectural spaces. Finally, an investigation of the existing literature concerning making places is combined with the understanding of the impact of digital technologies to construct an understanding of the concept of Virtual Place-making.
keywords Gamification in Architecture; Internet of Things in Architecture; Augmented Reality in Architecture; User-Participatory in Architecture; Placemaking;
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
doi https://doi.org/10.52842/conf.caadria.2018.2.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia18_000
id acadia18_000
authors Anzalone, Phillip; Del Signore,Marcella; Wit, Andrew John (eds.)
year 2018
title ACADIA 2018: Re/Calibration: On Imprecision and Infidelity
doi https://doi.org/10.52842/conf.acadia.2018
source Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7, Mexico City, Mexico 18-20 October, 2018, 482 p.
summary Contained in this years paper proceedings are an unbiased mixed of the precise/imprecise and the computationally faithful/unfaithful. The juxtaposition of this seeming contradictory research and/or projects paints a picture of a broadening computational discourse at the intersection of art, science and technology. The presented research mediates physical, digital, virtual and mixed realities, bridges scales from the singular material compounds to the complex conglomerations associated with the urban environment, and all the while pushing against the limits of design both on Earth and beyond. This year’s conference calls into question how we within the disciplines of architecture and design as well as those outside view the role of computation, production and advanced technologies such as robotics and artificial intelligence within architecture, design and the built environment.
series ACADIA
last changed 2022/06/07 07:49

_id acadia18_206
id acadia18_206
authors Farahi, Behnaz
year 2018
title HEART OF THE MATTER: Affective Computing in Fashion and Architecture
doi https://doi.org/10.52842/conf.acadia.2018.206
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 206-215
summary What if material interfaces could physically adapt to the user’s emotional state in order to develop a new affective interaction? By using emotional computing technologies to track facial expressions, material interfaces can help to regulate emotions. They can serve either as a tool for intelligence augmentation or as a means of leveraging an empathic relationship by developing an affective loop with the user. This paper explores how color- and shape-changing operations can be used as interactive design tools to convey emotional information, and is illustrated by two projects, one at the intimate scale of fashion and one at a more architectural scale. By engaging with design, art, psychology, and computer and material science, this paper envisions a world where material systems can detect the emotional responses of a user and reconfigure themselves in order to enter into a feedback loop with the user’s affective state and influence social interaction.
keywords full paper, materials & adaptive systems, materials/adaptive systems, computation.
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
doi https://doi.org/10.52842/conf.acadia.2018.336
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_182
id ecaade2018_182
authors Ghandi, Mona
year 2018
title Designing Affordable, Portable, and Flexible Shelter for the Homeless and the Refugees
doi https://doi.org/10.52842/conf.ecaade.2018.1.307
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 307-316
summary Advances in computational algorithmic design, material science, and fabrication technology have exposed architects to new opportunities in design and enabled them to address contemporary needs of cities and citizens. The far-reaching applications of this technology have provided students with a bewildering array of new tools for their design exploration. Among many of the socio-economic and political challenges facing today's world, homelessness and refugee crisis are the most critical. "Shape Your Shelter" design-build studio aimed to create a portable and transformable shelter using emergent technologies. This paper reviews some of the central concepts of such an endeavor and the role of computational design, digital fabrication, and material behavior as a medium of architectural design education and social services. It describes how these concepts can be used in a pedagogical framework to encourage student Innovation and increase students' engagement in new technological resources as they address critical contemporary and future social issues.
keywords Transformable Structures; Portable Architecture; Collaborative and Participative Design; Homeless / Refugee Shelter; CAAD Education; Social Architecture
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_k02
id ecaade2018_k02
authors Ingarden, Krzysztof
year 2018
title Between Critical Regionalism, Neo-vernacularism and Localised Modernism - Three projects of Ingarden & Ewy.
doi https://doi.org/10.52842/conf.ecaade.2018.1.017
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 17-24
summary In the 70s-80s Kenneth Frampton, defined the phenomenon of "critical regionalism" in contemporary architecture. He pointed out that the most interesting objects arise at the threshold between local and global architecture. These are objects that are open to modern technology in various fields of science, and at the same time remain rooted in the local tradition of building , thus to create a space that is approved and understood locally. The article presents two examples of buildings (the Ma³opolska Garden of Arts in Krakow and the Polish Pavilion EXPO 2005 Aichi in Japan, Europe - Far East Gallery in Krakow) that look for their individual contextual sources, turn to experiments with traditional materials, try to find lost threads of handicraft tradition, and at the same time reach for modern technologies with respect for the natural and cultural environment.
keywords wicker facade; building material experiments; experimental architecture; Polish architecture
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2018_228
id caadria2018_228
authors Newton, David
year 2018
title Accommodating Change and Open-Ended Search in Design Optimization
doi https://doi.org/10.52842/conf.caadria.2018.2.175
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 175-184
summary Many real-world architectural multi-objective problems (MOPs) are dynamic and may have objectives, decision variables, and constraints that change during the optimization process. These problems are known as dynamic MOPs (DMOPs). Dynamic multi-objective evolutionary algorithms (DMOEAs) have emerged in the fields of optimization, operations research, and computer science as one way to address the challenges posed by DMOPs. DMOEAs offer new capacities for exploration and interaction with the designer, but they have not yet been studied in the field of architecture. This research addresses these issues through the development of a unique interactive DMOEA-based design tool for the conceptual design phase. We propose a new modification to the popular nondominated sorting genetic algorithm II (NSGA-II), that we call the dynamic progressive for architecture NSGA-II (DPA-NSGA-II). We show that DPA-NSGA-II outperforms NSGA-II in finding novel solutions.
keywords algorithmic design; multi-objective optimization; evolutionary computation; parametric design; generative design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2018_189
id ecaade2018_189
authors Zardo, Paola, Quadrado Mussi, Andréa and Lima da Silva, Juliano
year 2018
title The Role of Digital Technologies in Promoting Contemporary and Collaborative Design Processes
doi https://doi.org/10.52842/conf.ecaade.2018.1.469
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 469-478
summary Digital technologies and contemporary CAAD systems are increasingly being adopted in architectural practice. Thus, their impacts on buildings design process need to be addressed and explored, as there are signs of a potential revolution in AEC industry. This paper presents a methodology and preliminary results of a work-in-progress for a Master of Science dissertation. The main purpose of the study is to find similarities in practice in order to determine main characteristics and fundamentals of contemporary design process. It consists of a design praxiology approach according to Cross' taxonomy of design research. Three project cases developed by digital processes and explored by secondary data from literature reviews, complemented by documentary research, are presented as preliminary results, as well as their main similarities. Through the analysis of the cases, it was verified that the presence of BIM, parametric modeling and digital fabrication overlaps and promotes holistic and largely collaborative design processes. The role of collaboration is highlighted, which was presented as a key factor for the success of the projects. Future results from the described methodology should allow a more detailed and in-depth characterization of the contemporary design process.
keywords digital technologies; contemporary design process; design praxiology
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2018_1602
id sigradi2018_1602
authors Domício de Meneses, Vítor; Ribeiro Cardoso, Daniel
year 2018
title Participatory processes in the contemporary city: what is the role of Information and Communication Technologies?
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1292-1297
summary Urban planning is composed of actions that bring together actors and diverse interests and, therefore, many obstacles. Participation is a fundamental factor for the success of these processes in search of fairer cities as it promotes the exacerbation of conflicts. This research investigates the role of Technologies and Information and Communication (TICs) in participatory processes. For this, virtual participation devices were raised and a connection was made from the established connections between governors and governed. Thus, the objective is to study the potential of ICT use in the construction of more coherent participatory processes.
keywords Participation; City; Information and Communication Technologies
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201816401
id ijac201816401
authors Doyle, Shelby and Nick Senske
year 2018
title Digital provenance and material metadata: Attribution and co-authorship in the age of artificial intelligence
source International Journal of Architectural Computing vol. 16 - no. 4, 271-280
summary This speculative essay examines a single drawing, produced in a collaboration between the authors and a Turtle robot, in a search for methods to evaluate and document provenance in artificial intelligence and robotic design. Reflecting upon the layers of authorship in our case study reveals the complex relationship that already exists between human and machine collaborators. In response to this unseen provenance, we propose new modes to document the full range of creative contribution to the design and production of artifacts from intellectual inputs to digital representations to physical labor. A more comprehensive system for artificial intelligence/robotic attribution could produce counter- narratives to technological development which more fully acknowledge the contributions of both humans and machines. As artificially intelligent design technologies distinguish themselves with distinct capabilities and eventual autonomy, a system of embedded attribution becomes the basis for human–machine collaboration, indeterminacy, and unexpected new applications for existing tools and methods.
keywords Artificial intelligence, robotics, metadata, attribution, co-authorship, ethics
series journal
email
last changed 2019/08/07 14:04

_id sigradi2018_1763
id sigradi2018_1763
authors Duarte Martins, Lucas; Ferreira Borges, Marina
year 2018
title The Use of High Low Architecture in the Creation of Alternative Construction Elements
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 367-374
summary This study presents an investigation on how the use of digital tools in the fields of architecture and engineering can help establish a connection between the architectural projects developed within Universities and what is produced by the construction industry, consolidating a critical design process that reflects on the use of current technologies. To do so, it will be necessary to employ knowledge gathered from the intersecting areas of architecture, computation and engineering to rethink the use of common materials directing it towards a non-specialized workforce, a relationship that can be defined as high-low architecture.
keywords High-Low Architecture; Concrete block; Digital tools; Performance-based design; Construction industry
series SIGRADI
email
last changed 2021/03/28 19:58

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia18_98
id acadia18_98
authors Fox, Michael; Schulitz, Marc; Gershfeld, Mikhail; Cohen, Marc
year 2018
title Full Integration: Closing the Gap on Technology Readiness
doi https://doi.org/10.52842/conf.acadia.2018.098
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 98-107
summary This paper discusses the authors’ experiences and lessons learned through designing and constructing small- and large-scale robotic prototypes and the fully integrated use of VR and AR for design. Also of focus here are the methodological tools utilized to implement this student-led research in an interdisciplinary educational environment, as well as the design explorations of Mars habitation systems. Through the systems engineering approach, students will generate ideas that may or may not make it to the final design development stage, but may potentially be valuable to future real exploration habitats and mission architectures. The final prototype allows an assessment of the focus parameters, which are the vessels’ transformation capacities and layout adaption. The design objective of this project is to examine strategies for commonality between an interplanetary vehicle (IPV) and a Mars surface habitat. The presented design proposals address this challenge to create a common habitation system in both habitats so that crew members will be familiar with the layout, function, and location throughout the expedition. The design tools operate at the intersection of architectural layout design, mechanics, and structural design, and use origami folding techniques and structural form-finding concepts to generate shell action rigidity. In addition, the project develops a strategy for mobility and transformation of the surface habitat prior to its transformed configuration. The value here lies in understanding lessons from this strategy for both the design process as well as efficiency and optimization in design as a model for terrestrial design.
keywords full paper, bim, flexible structures, performance + simulation, representation + perception, building technologies, vr/ar/mr
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id ecaade2018_197
id ecaade2018_197
authors Fuchkina, Ekaterina, Schneider, Sven, Bertel, Sven and Osintseva, Iuliia
year 2018
title Design Space Exploration Framework - A modular approach to flexibly explore large sets of design variants of parametric models within a single environment
doi https://doi.org/10.52842/conf.ecaade.2018.2.367
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 367-376
summary Parametric modelling allows to relatively easily generate large sets of design variants (so called design space). Typically, a designer intuitively moves through this design space, resulting in one or several satisfying solutions. Due to the theoretically large number of variants that can be created with parametric models, obviously, there is a high probability that potentially good solutions could be missed, which is not at least because of human cognitive limitations. Consequently, it is necessary to develop a certain strategy to support designers in order to search for design solutions. Even though, various methods to systematically approach large data sets exist, the application of them in the design process is a special case, firstly, due to the existence of many non-specifiable and subjective dimensions (e.g. aesthetics) and secondly because of the multiple ways how designers actually search for solutions. This demands for a more flexible approach to design space exploration. This paper investigates how different methods can be combined to support the exploration of design spaces. Therefore, a conceptual framework with a modular architecture is proposed and its prototypical implementation is demonstrated.
keywords Design Space Exploration; Parametric design
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2018_174
id caadria2018_174
authors Lagemann, Dennis
year 2018
title The Syntopy - An Information-Based Model of Space
doi https://doi.org/10.52842/conf.caadria.2018.2.443
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 443-452
summary The paper argues that Modernism has produced a manifoldness of theories about spaces or spatial configurations which resemble valuable facets. Yet, they all shed a light on single aspects of spatiality. This raises the question if not in the age of information, there could be a common ground for theories of space that might serve as a model to purport a more general view. Speaking with French philosopher Michel Serres, when the old model of time collapsed at the end of Modernity, it has left the underlying concepts as scattered elements to the beginning of Modernism. The most promising approach to reconcile these elements in spatiotemporality appears to be Category Theory in mathematics. It defines four categorically differentiated domains which exactly resemble the scattered elements. In search for a common ground to build up a new model, the Syntopy is being developed for thinking space, based on the way information is encoded within these four domains.
keywords Space; Information and Data; Lambda Calculus; Topography and Topology; Synthesis
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_975532 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002