CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id acadia18_156
id acadia18_156
authors Huang, Weixin; Zheng, Hao
year 2018
title Architectural Drawings Recognition and Generation through Machine Learning
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 156-165
doi https://doi.org/10.52842/conf.acadia.2018.156
summary With the development of information technology, the ideas of programming and mass calculation were introduced into the design field, resulting in the growth of computer- aided design. With the idea of designing by data, we began to manipulate data directly, and interpret data through design works. Machine Learning as a decision making tool has been widely used in many fields. It can be used to analyze large amounts of data and predict future changes. Generative Adversarial Network (GAN) is a model framework in machine learning. It’s specially designed to learn and generate output data with similar or identical characteristics. Pix2pixHD is a modified version of GAN that learns image data in pairs and generates new images based on the input. The author applied pix2pixHD in recognizing and generating architectural drawings, marking rooms with different colors and then generating apartment plans through two convolutional neural networks. Next, in order to understand how these networks work, the author analyzed their framework, and provided an explanation of the three working principles of the networks, convolution layer, residual network layer and deconvolution layer. Lastly, in order to visualize the networks in architectural drawings, the author derived data from different layer and different training epochs, and visualized the findings as gray scale images. It was found that the features of the architectural plan drawings have been gradually learned and stored as parameters in the networks. As the networks get deeper and the training epoch increases, the features in the graph become more concise and clearer. This phenomenon may be inspiring in understanding the designing behavior of humans.
keywords full paper, design study, generative design, ai + machine learning, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id acadia18_424
id acadia18_424
authors Bucklin, Oliver; Drexler, Hans; Krieg, Oliver David; Menges, Achim
year 2018
title Integrated Solid Timber. A multi-requisite system for the computational design,fabrication, and construction of versatile building envelopes
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 424-433
doi https://doi.org/10.52842/conf.acadia.2018.424
summary The paper presents the development of a building system made from solid timber that fulfils the requirements of modern building skins while expanding the design possibilities through innovation in computational design and digital fabrication. Multiple strategies are employed to develop a versatile construction system that generates structure, enclosure and insulation while enabling a broad design space for contemporary architectural expression. The basic construction unit augments the comparatively high insulation values of solid timber by cutting longitudinal slits into beams, generating air chambers that further inhibit thermal conductivity. These units are further enhanced through a joinery system that uses advanced parametric modeling and computerized control to augment traditional joinery techniques. Prototypes of the system are tested at a building component level with digital models and physical laboratory tests. It is further evaluated in a demonstrator building to test development and further refine design, fabrication and assembly methods. Results are integrated into proposals for new methods of implementation. The results of the research thus far demonstrate the validity of the strategy, and continuing research will improve its viability as a building system.
keywords full paper, materials and adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id sigradi2018_1744
id sigradi2018_1744
authors de Toledo e Gazel, Jorge Lira; Carmo Pena Martinez, Andressa; dos Santos, Denise Mônaco; Lopes de Souza, Douglas
year 2018
title 2 BITS: A case of mass customization for social housing
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 353-358
summary This work presents a design for mass customization of modular housing applied to the Brazilian case, through modeling in grasshopper. These parametric tools contribute to an increase in the flexibility of the decisions and allow the execution, generating a wide range of solutions for the same problem. As a case study, it was considered the environmental disaster which occurred in the city of Mariana, whose homeless population remains displaced. Although in the initial phase of studies, this modular housing model aims to discuss principles of variability, flexibility, and pre-fabrication, delegating more decisions to end-users of large-scale social housing.
keywords mass customization; parametric design; social housing
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_233
id ecaade2018_233
authors Kontiza, Iacovina, Spathi, Theodora and Bedarf, Patrick
year 2018
title Spatial Graded Patterns - A case study for large-scale differentiated space frame structures utilising high-speed 3D-printed joints
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-46
doi https://doi.org/10.52842/conf.ecaade.2018.2.039
summary Geometric differentiation is no longer a production setback for industrial grade architectural components. This paper introduces a design and fabrication workflow for non-repetitive large-scale space frame structures composed of custom-manufactured nodes, which exploits the advantages of latest advancements in 3D-printing technology. By integrating design, fabrication and material constraints into a computational methodology, the presented approach addresses additive manufacturing of functional industry-grade parts in short time, high speed and low cost. The resulting case study of a 4.5 x 4.5 x 2.5 m lightweight kite structure comprises 1380 versatile fully-customised connectors and outlines the manifold potential of additive manufacturing for architecture much bigger than the machine built space. First, after briefly introducing space frames in architecture, this paper discusses the computational framework of generating irregular space frames and parametric joint design. Second, it examines the advantages of MJF printing in conjunction with integrating smart sequencing details for the following assembly process. Finally, a conclusive outlook is given on improvements and further developments for bespoke 3D-printed space frame structures.
keywords 3D-printing; Multi-Jet Fusion; Space Frame; Graded Subdivision
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_180
id ecaade2018_180
authors Kwieciñski, Krystian and Markusiewicz, Jacek
year 2018
title HOPLA - Interfacing Automation for Mass-customization
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 159-168
doi https://doi.org/10.52842/conf.ecaade.2018.2.159
summary HOPLA (Home Planner) is a computer-aided design system aimed at simplifying customization of house design. It merges aspects of user-centered computer-aided design with machine-centered computerized design, as defined by Negroponte in The Architecture Machine. The tool was developed to fulfill mass-customization principles without compromising mass production efficiency and to support users' participation in design processes to help them formulate expectations and search for design solutions. We describe the details of the system development and its possible use in the process of mass-customization and participatory design of single-family houses. The system consists of two core elements: an algorithm based on a generic grammar responsible for generating design solutions in relation to user input, and a Tangible User Interface allowing users to introduce data and to control the process in an intuitive way. The main challenge in developing the system was to synchronize the freedom of user's design decisions with the rigor of machine's verification process.
keywords mass-customization; participatory design; tangible user interface; house design; generative design
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_234
id ecaade2018_234
authors Loh, Paul, Leggett, David and Prohasky, Daniel
year 2018
title CNC Adjustable Mould to Eliminate Waste in Concrete Casting
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 735-742
doi https://doi.org/10.52842/conf.ecaade.2018.1.735
summary Fabricating complex curvature in concrete panel typically required unique one-off formwork which is usually computer numerically controlled (CNC) milled, generating enormous waste as a by-product. What if, we can produce complex curvature in concrete with minimal or no immediate construction waste? This paper presents a novel machine designed by a team of architects and engineer to eliminate waste in concrete casting. Using a hyperbolic paraboloid geometric model, the machine produces variable shape using a single mould design reducing waste and cost to the casting process. The paper discussed the design framework of the system and its fabrication workflow. The outcome is digitally scanned and verified to satisfy industry standard. The paper concludes by reviewing the application of the system and highlighting the need for future research into digital fabrication and design that is less wasteful and waste conscious to better the process of constructing our built environment.
keywords Digital fabrication; Concrete casting; Adjustable mould
series eCAADe
email
last changed 2022/06/07 07:59

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

_id ecaade2018_394
id ecaade2018_394
authors Rubinowicz, Pawe³
year 2018
title Application of Available Digital Resources for City Visualisation and Urban Analysis
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 595-602
doi https://doi.org/10.52842/conf.ecaade.2018.2.595
summary The article presents two methods for generating 3D city models. The methods are based on LiDAR and GIS-2D data. The first one enables to create automatically simplified city models that include buildings in the LoD1 standard (excluding roof geometry). The second one provides for generating precise 3D city models including all components of the city space, such as buildings, tall green, city infrastructure. This involves direct transformation of DSM (Digital Surface Model) data as mesh-3D. The analyses presented are based on data available in Poland (in particular GIS). The results of the study can be easily applied for analysing other cities in Europe and elsewhere in the world. The article presents possibilities of using such models to urban analyses. The methods and figures included in the article have been developed using C++ software developed by the author.
keywords airborne LiDAR scanning; Digital Surface Model; BDOT 10k; city visualization; digital urban analysis; urban design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_360
id ecaade2018_360
authors Zwoliñski, Adam
year 2018
title Area and Volume Quantification of Open Spaces in Urban Structures Using 3d-Negative (N3D)
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 531-538
doi https://doi.org/10.52842/conf.ecaade.2018.1.531
summary The article, in the general extent, touches upon issue of the awareness of the cityscape in morphological terms. It concerns in particular the system of open spaces as an unique component of the urban structure of cities. The measurability of the phenomena still seems to be a challenge. The considerations presented in the article are embedded in the environment of virtual city models. The 3D-Negative (N3D) method developed by the author for generating and analyzing open space geometries in the virtual city model environment is used for example area and volume representation of urban structures in terms of space between buildings. The source analytic virtual city model data is generated on the basis of combination of DSM and DTM models. The cases discussed in the article prove the intuitive perception of open spaces in a quantifiable way. In the aspect of spatial data standardization, the presented analyses are embedded in the cityGML LOD1 standard.
keywords virtual city models; open spaces morphology; geometry of cityscape; 3D-Negative (N3D); advanced urban analyses
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
doi https://doi.org/10.52842/conf.acadia.2018.176
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
doi https://doi.org/10.52842/conf.caadria.2019.2.685
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2018.2.401
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2018_1602
id sigradi2018_1602
authors Domício de Meneses, Vítor; Ribeiro Cardoso, Daniel
year 2018
title Participatory processes in the contemporary city: what is the role of Information and Communication Technologies?
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1292-1297
summary Urban planning is composed of actions that bring together actors and diverse interests and, therefore, many obstacles. Participation is a fundamental factor for the success of these processes in search of fairer cities as it promotes the exacerbation of conflicts. This research investigates the role of Technologies and Information and Communication (TICs) in participatory processes. For this, virtual participation devices were raised and a connection was made from the established connections between governors and governed. Thus, the objective is to study the potential of ICT use in the construction of more coherent participatory processes.
keywords Participation; City; Information and Communication Technologies
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
doi https://doi.org/10.52842/conf.acadia.2018.336
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_173
id caadria2018_173
authors Stouffs, Rudi
year 2018
title A Triple Graph Grammar Approach to Mapping IFC Models into CityGML Building Models
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 41-50
doi https://doi.org/10.52842/conf.caadria.2018.2.041
summary A triple graph grammar approach is adopted as a formal framework for semantic and geometric conversion of IFC models into CityGML Level of Detail 3/4 building models. The triple graph grammar approach supports a semantic mapping from IFC to CityGML, the generation of conversion routines from this mapping, and an incremental approach to achieving a "complete and near-lossless" mapping. The objective of this approach is the development of a methodology and algorithms to automate the conversion of Building Information Models into CityGML building models, capturing both geometric and semantic information as available in the BIM models, in order to create semantically enriched 3D city models that include both exterior and interior structures.
keywords BIM; CityGML; conversion; semantic; automated
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia18_82
id acadia18_82
authors Sun, Chengyu; Zheng, Zhaohua; Sun, Tongyu
year 2018
title Hybrid Fabrication. A free-form building process with high on-site flexibility and acceptable accumulative error
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 82-87
doi https://doi.org/10.52842/conf.acadia.2018.082
summary Although digital fabrication has a booming development in the building industry, especially in freeform building, its further application in onsite operations is still limited because of the huge flexibility required in programming. On the contrary, traditional manual fabrication onsite deals perfectly with problems that always accompany fatal accumulative errors in freeform building. This study explores a hybrid fabrication paradigm to take advantage of both in an onsite freeform building project, in which there is a cycling human–computer interactive process consisting of manual operation and computer guidance in real time. A Hololens-Kinect system in a framework of typical project camera systems is used in the demonstration. When human builders perceive, decide, and operate the irregular foam bricks in a complex onsite environment, the computer keeps updating the current form through 3D scanning and prompting the position and orientation of the next brick through augmented display. From a starting vault, the computer always fine tunes its control surface according to the gradually installed bricks and keeps following a catenary formula. Thus, the hybrid fabrication actually benefits from the flexibility based on human judgment and operation, and an acceptable level of accumulative error can be handled through computer guidance concerning the structural performance and formal accuracy.
keywords work in progress, vr/ar/mr, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia18_56
id acadia18_56
authors Suzuki, Seiichi; Knippers, Jan
year 2018
title Digital Vernacular Design. Form-finding at the edge of realities
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 56-65
doi https://doi.org/10.52842/conf.acadia.2018.056
summary Introducing design innovation within structural systems normally requires the development of novel design strategies for exploring different solutions in which optimized shapes can be derived from material behaviors and force principles. This condition is particularly important for bending- and form-active structures where intricate geometrical arrangements can be produced by combining simple discrete components. The use of real-time physics-based simulations as design tools has rapidly become popular for addressing these problems. However, all numerical methods tend to lack the interactive and playful characteristics that are intrinsic in traditional analogue methods. Because of this, the intuitive and creative characteristics of digital design processes are limited, and therefore a gap between analogue and digital design practices is progressively created.

In this paper, we present a design approach we call "digital vernacular," which involves the combination of interactive and playful characteristics of empirical and experimental methods within numerical models. This approach originates from the technical framework of topology-driven form-finding, which addresses the activation of topologic spaces during real-time physics-based simulations. The presented study is placed within a larger body of research regarding simulation-based design and aims to bridge the gap between analogue and digital design practices. Two computational frameworks based on particle-based methods and a set of research projects are presented to illustrate our design approach.

keywords work in progress, design methods and information processing, form finding, physics, representation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_893978 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002