CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 592

_id ecaade2018_180
id ecaade2018_180
authors Kwieciñski, Krystian and Markusiewicz, Jacek
year 2018
title HOPLA - Interfacing Automation for Mass-customization
doi https://doi.org/10.52842/conf.ecaade.2018.2.159
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 159-168
summary HOPLA (Home Planner) is a computer-aided design system aimed at simplifying customization of house design. It merges aspects of user-centered computer-aided design with machine-centered computerized design, as defined by Negroponte in The Architecture Machine. The tool was developed to fulfill mass-customization principles without compromising mass production efficiency and to support users' participation in design processes to help them formulate expectations and search for design solutions. We describe the details of the system development and its possible use in the process of mass-customization and participatory design of single-family houses. The system consists of two core elements: an algorithm based on a generic grammar responsible for generating design solutions in relation to user input, and a Tangible User Interface allowing users to introduce data and to control the process in an intuitive way. The main challenge in developing the system was to synchronize the freedom of user's design decisions with the rigor of machine's verification process.
keywords mass-customization; participatory design; tangible user interface; house design; generative design
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_302
id caadria2018_302
authors Lee, Alric, Tei, Hirokazu and Hotta, Kensuke
year 2018
title Body-Borne Assistive Robots for Human-Dependent Precision Construction - The Compensation of Human Imprecision in Navigating 3-Dimensional Space with a Stand-Alone, Adaptive Robotic System
doi https://doi.org/10.52842/conf.caadria.2018.1.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary The rapid growth of complex contemporary architecture design, contributed by the advance in parametric CAD/CAM software, is accompanied by challenges in the production process; it demands both highly trained workers and technical equipments. This paper reviews current technologies in robotics-aided construction and wearable computers for generic purposes, and proposes the design of a robotic device for construction guidance. It guides the user, the worker, through the assembly process of precision modular constructions, by providing procedural mechanical or haptic assistance in the 3-dimensional positioning of building components. The device is designed to be wearable, portable, and operable as a completely stand-alone system that requires no external infrastructure. A prototype of the device is tested with a mock-up masonry construction experiment, the result of which is reported in this paper, along with discussion for future improvement and application opportunities within the context of highly developed, condensed Japanese urban environments. A greater objective of this paper is to bridge current studies in Human-Computer Interaction (HCI) and digital fabrication in architecture and promote the potentials of human workers in future construction scenes.
keywords digital fabrication; human-computer interaction; 3d positioning; wearable robotics; guided construction
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_274
id ecaade2018_274
authors Stojanovski, Todor
year 2018
title City Information Modelling (CIM) and Urban Design - Morphological Structure, Design Elements and Programming Classes in CIM
doi https://doi.org/10.52842/conf.ecaade.2018.1.507
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 507-516
summary In architecture, there was an evolution from Computer-Aided Design (CAD) to Building Information Modelling (BIM), but in urban planning and design, where the Geographic Information Systems (GIS) are often used, there is no such analogy. This paper reviews research in typo-morphology, a branch of urban morphology, procedural modelling of buildings and cities and 3D city modelling and visualizations. It present a generic morphological structure of urban elements and discusses them as programming classes in City Information Modelling (CIM) and the application of CIM in urban design practice. Urban design can be understood as art of juxtaposing and arranging urban design elements such as streets, sidewalks, buildings, building façades, landscaping, etc. Designing implies experimentation and play for design elements within design worlds. CIM should integrate procedural modelling, urban morphological research with toolboxes of design elements and rules of combinations. CIM should serve as digital design worlds where urban designers can play with design elements, model and analyse urban scenarios with generative procedures, rules and typological processes.
keywords City Information Modelling (CIM); urban morphology; morphological structure; urban design; design element; programming classes
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_016
id caadria2018_016
authors Zahedi, Ata and Petzold, Frank
year 2018
title Utilization of Simulation Tools in Early Design Phases Through Adaptive Detailing Strategies
doi https://doi.org/10.52842/conf.caadria.2018.2.011
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 11-20
summary Decisions taken at early stages of building design have a significant effect on the planning steps for the entire lifetime of the project as well as the performance of the building throughout its lifecycle (MacLeamy 2004). Building Information Modelling (BIM) could bring forward and enhance the planning and decision-making processes by enabling the direct reuse of data hold by the model for diverse analysis and simulation tasks (Borrmann et al. 2015). The architect today besides a couple of simplified simulation tools almost exclusively uses his know-how for evaluating and comparing design variants in the early stages of design. This paper focuses on finding new ways to facilitate the use of analytical and simulation tools during the important early phases of conceptual building design, where the models are partially incomplete. The necessary enrichment and proper detailing of the design model could be achieved by means of dialogue-based interaction concepts with analytical and simulation tools through adaptive detailing strategies. This concept is explained using an example scenario for design process. A generic description of the aimed dialog-based interface to various simulation tools will also be discussed in this paper using an example scenario.
keywords BIM; Early Design Stages; Adaptive Detailing ; Communication Protocols; Design Variants
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
doi https://doi.org/10.52842/conf.acadia.2018.404
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_263
id ecaade2018_263
authors Dy, Bianchi and Stouffs, Rudi
year 2018
title Combining Geometries and Descriptions - A shape grammar plug-in for Grasshopper
doi https://doi.org/10.52842/conf.ecaade.2018.2.499
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 499-508
summary A persistent challenge to the more widespread use of shape grammars in architectural research is the creation of rules and rule sets for application in design contexts, while leaving space for design creativity despite the limitations of a rule-based system. A hybrid of associative and rule-based approaches may alleviate this. We present one such development, a Grasshopper shape grammar plug-in that embeds a rule-based approach within a parametric modelling environment. It supports shape emergence, visual enumeration of rule application results, and the parametric definition of shapes and shape rules even when selecting a non-parametric rule matching mechanism. Grasshopper's ability to handle geometries and text together allows for external descriptions and labels as attributes to points, enabling definition and application of compound, geometric and description rules. Well-known examples from shape grammar literature are implemented using the plug-in, with a focus on rule definition and application in the context of interaction between the parametric modelling environment and the rule-based interpreter, and simultaneous use of geometry, descriptions, and descriptions as attributes in rules.
keywords shape grammar; shape grammar interpreter; parametric modelling; Grasshopper; rule-based; descriptions
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2018_1248
id sigradi2018_1248
authors Eloy, Sara; Dias, Maria Ângela; Vermaas, Pieter E
year 2018
title User-centered shape grammars for housing transformations: towards post-handover grammars
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 156-164
summary This paper presents a post-handover shape grammar for introducing inhabitants wishes in the transformation of individual houses of the Malagueira housing complex by Álvaro Siza Vieira in Évora, Portugal. The presented research includes a case study developed in the context of the workshop Gramática da Forma em estudos de habitação - análise, geração e customização at the Universidade Federal do Rio de Janeiro, Brazil. In this paper we present the first developments of the Malagueira transformation grammar, including corpus of analysis, shape rules, and derivations, and we discuss the opportunities that shape grammar brings to user-centered design.
keywords Housing; Participatory design; Shape grammar; Transformation; Inhabitants
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_163
id ecaade2018_163
authors Hadighi, Mahyar and Duarte, Jose
year 2018
title Adapting Modern Architecture to a Local Context - A Grammar for Hajjar’s Hybrid Domestic Architecture
doi https://doi.org/10.52842/conf.ecaade.2018.2.515
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 515-524
summary The purpose of this study is to analyze Abraham William Hajjar's single-family houses in State College, PA, using shape grammar as a computational design methodology. Hajjar was a member of the architecture faculty at the Pennsylvania State College (now The Pennsylvania State University), a practitioner in State College, and an influential figure in the history of architecture in the area. In this study, shape grammars are used specifically to verify and describe influences of modern architecture, as defined by Hitchcock and Johnson (1932), and influences of local traditional American architecture on Hajjar's domestic architecture. The underlying hypothesis is that Hajjar's work is the result of a hybridity phenomenon that can be traced through a computational design methodology. The first step in this endeavor and the study focus is to establish Hajjar's single-family architectural language. Future work will be concerned with verifying and describing the hybridity between modern architecture and traditional architecture expressed in Hajjar's work by comparing his grammar with grammars underlying modern and traditional architecture likewise.
keywords shape grammar; modern architecture ; American architecture; William Hajjar; hybridity; single-family houses
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaaderis2018_115
id ecaaderis2018_115
authors Hadighi, Mahyar and Duarte, Jose
year 2018
title Local Adaptation of Modern Architecture - A Grammar for Hajjar’s Domestic Architecture
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 15-20
keywords The purpose of this study is to analyze Abraham William Hajjar's single-family houses in State College, PA, using shape grammar as a computational design methodology. Hajjar was a member of the architecture faculty at the Pennsylvania State College (now The Pennsylvania State University), a practitioner in State College and an influential figure in the history of architecture in the area. Shape grammars are used specifically to verify and describe the influences of modern architecture as defined by Hitchcock and Johnson (1932) and traditional American architecture in the area on Hajjar's domestic architecture. The underlying hypothesis is that the work of Hajjar is the result of a hybridity phenomenon that will be traced through a computational design methodology. The first step in this endeavor is to establish the single-family architectural language of Hajjar, which is briefly described in this paper. Future steps will aim at verifying and describing the hybridity between modern architecture and traditional architecture in his work by comparing Hajjar's grammar with grammars encoding modern and traditional architecture.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_434
id ecaade2018_434
authors Hünkar, Ertunç and Figueiredo, Bruno Acácio Ferreira
year 2018
title 3D Printing of High Strength and Multi-Scaled Fragmented Structures
doi https://doi.org/10.52842/conf.ecaade.2018.1.173
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 173-178
summary Our research aims to push the limits of 3D printing towards the structural design and optimization. Additive manufacturing has an unique feature which is printing multi-faced complex geometries as easy as simple ones. Therefore additive manufacturing creates the chance of producing really small scaled complex forms. In a structural network, it can be easily understood that the more geometric variations to respond stress, the more adaptive structure will become to respond structural needs. The structural reaction is to be fictionalized by procedural operations and analysis that will be a tool to design multi-scaled fragmented structures. Those operations is to use the structural analysis and material reactions. Their iteration with the overall geometry will form the geometric generations. However the verification of the generations as outcomes of a real 3D printer is crucial. To verify, the precision of additive manufacturing should be sensitive enough that the structural element will function as it's simulated in computer with the algorithm. The sensitivity is important because, even couple of micro-sized problems can cause bigger ones in the structural element itself. The combination of all these variables can enable an initial geometry, to be able to adapt the stuructural needs in every additive generation.
keywords Additive Manufacturing(AM); Structural Optimization; Selective Laser Sintering(SLS); Structural Design; Shape Grammars; Design Computation
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_216
id ecaade2018_216
authors Yavuz, Ecenur, Çolako?lu, Birgül and Aktaº, Begüm
year 2018
title From Pattern Making to Acoustic Panel Making Utilizing Shape Grammars
doi https://doi.org/10.52842/conf.ecaade.2018.2.477
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 477-486
summary This paper presents the application of shape grammars in a real case design problem. The design problem is stated as developing computational acoustic panel solution for classroom with various acoustic problems by modifying 2D pattern, which basically utilizes shape grammars. The study demonstrates interdisciplinary environment of design education and discussions of shape grammars in acoustic panel design and making. It includes different methods to design, like intuitive tendencies, computational thinking, computational tools, and computer simulations. The rule sets of the 2D (pencil-paper-based) pattern are intuitively created by the designer with simultaneous studies of understanding shape grammars. The study consists of three stages. The first stage illustrates 2D pattern generation utilizing computational thinking via shape grammar methodology, second stage illustrates computer generation of 2D pattern with the help of computational tools, and the third stage utilization and modification of this 2D pattern into 3D acoustic panel with feedbacks of computer simulations.
keywords computational design; computer-generated geometrical design; shape grammar; acoustic; odeon
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_161
id caadria2018_161
authors Huang, Xiaoran, White, Marcus and Burry, Mark
year 2018
title Design Globally, Immerse Locally - A Synthetic Design Approach by Integrating Agent Based Modelling with Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2018.1.473
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 473-482
summary The last three decades have witnessed the explosion of technology and its impact on the architecture discipline which has drastically changed the methods of design. New techniques such as Agent-based modeling (ABM) and Virtual Reality (VR) have been widely implemented in architectural and urban design domains, yet the potential integration between these two methods remains arguably unexploited. The investigation in this paper aims to probe the following questions: How can architects and urban designers be informed more comprehensively by melding ABM and VR techniques at the preliminary/conceptual design stage? Which platform is considered more appropriate to facilitate a user-friendly system and reduces the steep learning curve? And what are the potential benefits of this approach in architectural education, particularly for the design studio environment? With those questions, we proposed a prototype in Unity, a multi-platform development tool that originated from the game industry, to simulate and visualize pedestrian behaviors in urban environments with immersive design experience and tested it in a scenario-based case study. This approach has also been further tested in an architectural design studio, demonstrating its technical feasibility as well as the potential contributions to the pedagogy.
keywords Agent based modelling; Virtual Reality; Urban Design
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2018_000
id ecaade2018_000
authors Kepczynska-Walczak, A, Bialkowski, S (eds.)
year 2018
title Computing for a better tomorrow, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2018.1
source Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, 858 p.
summary The theme of the 36th eCAADe Conference is Computing for a better tomorrow. When we consider the aims of research activities, design efforts and mastering towards ideal solutions in the area of digital technologies in the built environment, such as CAD, CAM, CAE, BIM, FM, GIS, VR, AR and others, we may realise the actual reason for that is to make life better, healthier, prettier, happier, more sustainable and smarter. The usefulness of undertaken studies might be tested and proved by the noticeable shared approach of putting humans and their environments in a central position: man and the environment, nature and design, art and technology... Natural disasters and climate change, crime and terrorism, disabilities and society ageing - architects, designers and scientists active in the built environment domain are not able to eliminate all the risk, dangers and problems of contemporary world. On the other hand, they have social and moral responsibilities to address human needs and take up this multifaceted challenge. It involves a co-operation and, moreover, an interdisciplinary and user-oriented approach. The complexity of raised problems should not discourage us, on the contrary, it should stimulate activities towards living up to human dreams of a better and sustainable tomorrow. This calls for a revision of methods and tools applied in research, teaching and practice. Where are we? What are the milestones and roadmaps at the end of the second decade of the 21st century? Do we really take the most of the abundance of accumulated knowledge? Or we skip to explore another undiscovered domains? We invited academicians, researchers, professionals and students from all over the world to address the multifaceted notions of using computing in architectural and related domains for developing a better tomorrow. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. In order to specifically address some of the questions above, we defined subthemes and organised specific sessions around these subthemes, during the conference as well as in the proceedings.
series eCAADe
last changed 2022/06/07 07:49

_id ecaade2018_001
id ecaade2018_001
authors Kepczynska-Walczak, A, Bialkowski, S (eds.)
year 2018
title Computing for a better tomorrow, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2018.2
source Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, 860 p.
summary The theme of the 36th eCAADe Conference is Computing for a better tomorrow. When we consider the aims of research activities, design efforts and mastering towards ideal solutions in the area of digital technologies in the built environment, such as CAD, CAM, CAE, BIM, FM, GIS, VR, AR and others, we may realise the actual reason for that is to make life better, healthier, prettier, happier, more sustainable and smarter. The usefulness of undertaken studies might be tested and proved by the noticeable shared approach of putting humans and their environments in a central position: man and the environment, nature and design, art and technology... Natural disasters and climate change, crime and terrorism, disabilities and society ageing - architects, designers and scientists active in the built environment domain are not able to eliminate all the risk, dangers and problems of contemporary world. On the other hand, they have social and moral responsibilities to address human needs and take up this multifaceted challenge. It involves a co-operation and, moreover, an interdisciplinary and user-oriented approach. The complexity of raised problems should not discourage us, on the contrary, it should stimulate activities towards living up to human dreams of a better and sustainable tomorrow. This calls for a revision of methods and tools applied in research, teaching and practice. Where are we? What are the milestones and roadmaps at the end of the second decade of the 21st century? Do we really take the most of the abundance of accumulated knowledge? Or we skip to explore another undiscovered domains? We invited academicians, researchers, professionals and students from all over the world to address the multifaceted notions of using computing in architectural and related domains for developing a better tomorrow. Approaches discussing the theme from the perspective of computer aided design education; design processes and methods; design tool developments; and novel design applications, as well as real world experiments and case studies were welcomed. In order to specifically address some of the questions above, we defined subthemes and organised specific sessions around these subthemes, during the conference as well as in the proceedings.
series eCAADe
last changed 2022/06/07 07:49

_id acadia18_260
id acadia18_260
authors Tish, Daniel; Schork, Tim; McGee, Wes
year 2018
title Topologically Optimized and Functionally Graded Cable Nets. New approaches through robotic additive manufacturing
doi https://doi.org/10.52842/conf.acadia.2018.260
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 260-265
summary Recent advancements in the realm of additive manufacturing technologies have made it possible to directly manufacture the complex geometries that are resultant from topological optimization and functionally graded material processes. Topological optimization processes are well understood and widely used within the realm of structural engineering and have been increasingly adopted in architectural design and research. However, there has been little research devoted to the topological optimization of cable nets and their fabrication through robotic additive manufacturing. This paper presents a design framework for the optimization of additively manufactured tensile cable nets that attempts to bridge between these two domains by reframing the scale of topological optimization processes. Instead of focusing solely on the topology optimization at the macro-scale of cable nets, this research develops a method to optimize the meso-scale topology and defines metamaterial units with different properties to be aggregated into a complex whole. This reorientation from the formal towards the material domain signals an engagement with morphogenetic modes of design that find formal expression through bottom-up material processes. In order to further investigate the emerging potentials of this reorientation, the presented method is validated through physical deformation tests, as well as applied to the design of a furniture-scale case study project realized through the use of robotic additive manufacturing of elastomeric materials
keywords work in progress, materials & adaptive systems, robotic production, computation, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id sigradi2018_1301
id sigradi2018_1301
authors Cebral Loureda, Manuel
year 2018
title herm3TIC-tv: Prototype of a human and social sciences laboratory based on Deleuze-Guattari philosophy and the application of the new ICT
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 948-954
summary Our social interactions, increasingly mediated by technology, require subjectivity singularization spaces. The philosophy of Deleuze-Guattari gives us the keys of a machinic device that can counter-actualize the generic arrengement we suffer, derived from media and technology. This space is considered as a scenic space but also scientific and analytical, developing what Deleuze-Guattari called schizoanalysis clinic but that we can also understand as the development of a proper and interdisciplinary methodology for the new laboratories of human and social sciences.
keywords Schizoanalysis; Visual arts; Interactives; Big data; Neuroimaging
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1312
id sigradi2018_1312
authors Lima, Fábio
year 2018
title About (relatively) common operations in digital architectures
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 31-36
summary Many different types of algorithms have been associated to gain complex shapes. They give rise to a large set of unusual forms, through calculations based on computational geometries, self-organizing systems, rule-based systems, and optimization, often still assembled in morphogenesis principles. Many of these discoveries mimic physical, chemical, and even behavioral principles at the edge of this code-translated knowledge. Thus, any new form, the result of this exploratory perspective, can mean some progress. If the understanding of specific algorithmic characteristics has validity (for precise programming), generic concepts are also important for simplifying procedures and presenting general concepts of the result.
keywords Digital architecture; Computational geometry; Visual expression; Syntax generalities
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1616
id sigradi2018_1616
authors Rodrigues Alves, Manoel; Martins Abdalla, Alvaro; Tapia, Carlos
year 2018
title Exploring Urban Interventions through Computational tools: genetic algorithm and urban connection patterns
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 109-114
summary This paper presents a particular approach to design processes in urban design, in a transdisciplinary environment. Exploring geotechnologies, information and communication technologies, artificial intelligence techniques and experimental softwares (fuzzy logic and generic algorithm), the workshop “Generation of Urban Connection Patterns”, developed by IAU-USP (Brazil) and ETSA-US (Spain), aimed: to investigate urban space connection patterns in areas of environmental and social vulnerability; to explore formal arrangements in urban design; to foster academic exchange and possibilities of collaborative workshops. The article also discusses the role of computational tools and the implementation of in-person and non-presential methods in the teaching/learning process.
keywords Transdisciplinarity; Teaching and Learning; Genetic Algorithm; Urban Connection Patterns; Urban Design
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaade2018_166
id ecaade2018_166
authors Unger, Pawe³ and Rom?o, Luís
year 2018
title The Game of Urban Attractiveness - Shape Grammars and Cellular Automata Based Tool for Prediction of Human's Behaviour in Cities
doi https://doi.org/10.52842/conf.ecaade.2018.2.629
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 629-638
summary This paper presents a way to predict people's interest in a public space based on a space's "attractiveness" as a movement attractor. Two generative systems are integrated into the prediction model. The Cellular Automata (CA) is the core of simulation engine and the Shape Grammars (SG) is a descriptive language for the CA rules. Both, CA and SG exhibit complementary features counteracting each other's drawbacks. Having translated social behaviour into a set of rules, the CA algorithm applies them to distinguish people's leisure interest attractors from places with a minor attractiveness. The tool is designed to be used at various urban scales by city planners and venture capitalists. It is dedicated towards the early stage of planning process to evaluate the future attractiveness of places. The case study is located in the central district of Lisbon, Bairro Alto. One of the important aspects are description of the rules with SG and interpretation of the CA results. Implemented in Python for Grasshopper and visualised in Rhinoceros3D. The article does not present the final solution, rather is an experimental attempt to interpret and describe the already explored urban context of Cellular Automata.
keywords Behaviour Prediction; Cellular Automata; Shape Grammars; Space Attractiveness; Urban Simulation
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_4145 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002