CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2018_317
id ecaade2018_317
authors Kontovourkis, Odysseas and Doumanidis, Constantine C
year 2018
title ICARUS Project - An Open Source Platform for Computer Programming in Architectural Teaching and Research
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 341-350
doi https://doi.org/10.52842/conf.ecaade.2018.1.341
summary This paper, presents an ongoing work entitled ICARUS, an abbreviation for 'Integrating Computerized ARchitecture with USers'. The aim of this work is to develop an open source platform for computer programming implemented in architecture, for teaching and research. In particular, the platform provides the framework for a simplified and user friendly textual programming methodology for the needs of our architectural institution. It consists of several modules like coding, plug-in and repository development, targeting to be publicly available in the future. The platform is created based on the Python programming language, which is run in Grasshopper, a plug-in for Rhino 3D. In the first phase of ICARUS development, several case studies within the framework of a postgraduate course are conducted, aiming at providing an overview of its potentials, limitations and generally, its impact on establishing a useful methodology for algorithmic thinking among students with little or no prior computer programming skills.
keywords Computer programming; Open source platform; Parametric design; Plug-in development; Algorithmic thinking
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_107
id ecaade2018_107
authors Sopher, Hadas, Fisher-Gewirtzman, Dafna and Kalay, Yehuda E.
year 2018
title Use of Immersive Virtual Environment in the Design Studio - An Assessment Model
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 843-852
doi https://doi.org/10.52842/conf.ecaade.2018.2.843
summary The Architectural Studio is dedicated to teaching students the design process. Students learn by developing an architectural artefact in increasing complexity. They do so through three phases: structuring the problem, developing design proposals and converging decisions into a detailed solution state. This process has been taking place mostly in traditional physical settings. The advent of new technologies, most notably Immersive Virtual Environments (IVEs), introduces a new kind of setting that holds promise to influence the architectural learning process. This paper describes a model we have developed to assess the impact of IVE on this learning process. To do so, we have developed a method for coding learners' design decisions and the way they are developed, accounting for their educational settings - whether a traditional studio classroom or an IVE. The method consists of units we term Knowledge Construction Activities (KCAs) and reveals the relationship between the learning process and the educational setting in which it takes place, through time. The results revealed that the IVE supported extensive design development, especially during the second and third learning phases, calling for an informed integration of IVEs in future Studio syllabi.
keywords Design Studio; Knowledge Construction Activities; Immersion; Design process; Design analysis
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_210
id ecaade2018_210
authors Ezzat, Mohammed
year 2018
title A Computational Tool for Mapping the Users' Urban Cognition - A Framework and a Representation for the Evolutionary Optimization of the Fuzzy Binary Relation between the Urban Conceptions of "Us" and "Others"
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 667-676
doi https://doi.org/10.52842/conf.ecaade.2018.1.667
summary The paper proposes a computational tool for simulating the users' urban cognitive systems, or more specifically the long-term memory associated with the knowledge of urbanism and its related urban visual features. The tool builds on our comprehensive theory of Urbanism, which presents a monolithic, structured, comprehensive, professional conception of Urbanism based on which any relativistic users' urban conceptions could be predicted as a restructuring of the professional conception. These versatile relativistic conceptions would emerge based on a nurturing environment, which is a conception of the empirical/anthropological collected data of the intended users' reflections against their preferred constructed urban environments. Once the users' conceptions of Urbanism are formulated, which is the first phase of the simulation, the users' impressions against any examined urban constructs are attainable, which is the second phase of the simulation. The two phases, the framework, would be monolithically represented by a proposed novel cellular graph. The proposed computational tool is thought of as a robust technique for the computational incorporation of the users' urban identity, and some of its constituents could be considered as a needed common platform of communication for a successful Human-Computer interaction in the field of urban analysis/design.
keywords a comprehensive model of Urbanism; a default professional conception of Urbanism; the relativistic users' conceptions of Urbanism ; recognized extracted urban features ; the users' urban identity; A comprehensive theory for space syntax:
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
doi https://doi.org/10.52842/conf.acadia.2018.336
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id caadria2018_010
id caadria2018_010
authors Han, Lu and Cardoso Llach, Daniel
year 2018
title Ludi: A Concurrent Physical and Digital Modeling Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-523
doi https://doi.org/10.52842/conf.caadria.2018.1.515
summary This paper explores the potential of a concurrent physical and digital modeling environment. We describe a prototype for a novel design modeling interface where users can take advantage of the affordances of both physical and digital modeling environments, and work back and forth between the two. Using Processing, along with the Kinect depth sensor, the system uses depth data read from a physical modeling space to produce an enhanced digital representation in real time. Users can design by moving and stacking wooden blocks in a physical space, which is represented (and enhanced) digitally as a "voxel space," which can in turn be edited digitally. The result is a proof-of-concept concurrent physical and digital modeling environment combining design affordances specific to each media: the physical space offers tactile and embodied forms of design inter-action, and the digital space offers parametric editing capabilities, along with the capacity to view the modeling space from different perspectives, and perform basic analyses on designs. Following a brief review of experimental computational and tangible interaction design interfaces, the paper discusses the system's implementation, its limitations, and future steps.
keywords Computational Design; Processing; Concurrent Modeling Environment; Tangible Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_159
id ecaade2018_159
authors Isanovic, Hatidza and Çolako?lu, Birgül
year 2018
title Developing a Methodology for Learning BIM through Education-Practice Collaboration
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 241-246
doi https://doi.org/10.52842/conf.ecaade.2018.1.241
summary Architecture, like other practice-oriented schools, aims to teach skills and knowledge required in professional practice. The aspired architecture profession increasingly requires practitioners who are able to work in collaborative BIM environments. This creates a task for education to develop new ways of teaching BIM concepts and tools to prepare the next generations of students who will enter the work force. To address this need, this study developed a methodology for learning BIM in architecture education by establishing relationship between practice and education. As substantial part of methodology development process, this paper will present the ongoing research that focuses on collaborative teaching process between AE practitioners and teachers. The benefits and challenges of this process will be presented and discussed.
keywords BIM; education-practice partnership; hybrid model; collaborative teaching; case method; hands-on
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia18_66
id acadia18_66
authors Peek, Nadya; Gershenfeld, Neil
year 2018
title Mods: Browser-Based Rapid Prototyping Workflow Composition
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 66-71
doi https://doi.org/10.52842/conf.acadia.2018.066
summary Software is shared through files and libraries, but workflows are not. To be able to share workflows for rapid automation, we developed an extensible environment for running CAD, CAM, and machine control. We present Mods, a browser-based environment for data handling, toolpath planning, and machine execution. Users compose modules (either existing modules or new modules they contribute) into workflows for machine automation sequences in a dataflow environment. The modules themselves run client side, implementing the functions used by the modules (such as toolpath planning algorithms or image analysis) in JavaScript, which runs in the browser. The physical machines are connected to a JavaScript server, which listens to commands from the client over a WebSocket connection. Together, these software modules make up an extensible and simple-to-use alternative to traditional CAD/CAM machine control environments.
keywords work in progress, software, digital fabrication, automation, computer-aided-machining
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id acadia18_108
id acadia18_108
authors Sanchez, Jose
year 2018
title Platforms for Architecture: Imperatives and Opportunities of Designing Online Networks for Design
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 108-117
doi https://doi.org/10.52842/conf.acadia.2018.108
summary The rise of platforms such as Facebook, YouTube, and Uber, initially celebrated as part of a disruptive new era of the internet, has slowly been reassessed as a problematic and unregulated form of twenty-first-century info-capitalism that contributes to inequality, mistrust, and user polarization. The internet has become a place for content creation, not only consumption, and the content freely created by the network of users has defined a self-organizing system of ad-hoc audiences following echo chambers organized through artificial intelligence, which amplifies previously identified trends. While a large portion of the content created by users seems to be aimed at personal forms of entertainment, a few remarkable projects, such as Wikipedia, have allowed hundreds of users to contribute to a collective goal. While we can observe that the platform model has appeared in diverse disciplines, allowing the creation of content from news articles to music, we have not seen the emergence of a robust design platform intended to proliferate and advance the discipline of architecture.

This paper makes the case that video game technology and its audiences have reached a state of technical capability that could allow for architectural platforms to emerge, one in which players could learn, create, and share architectural designs. Such a platform comes with a series of ethical imperatives, questions of value proposition, and liabilities, as well as a high potential to communicate and proliferate architectural knowledge and know-how. Common’hood, currently under development, will be used as a case study to engage the development of an ethical architectural platform that develops a proposition towards authorship, ownership, and collective engagement.

keywords full paper, platforms, capitalism, network, video game, combinatorics, information theory, entropy, co-ops, platform cooperativism, privacy, encryption
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_139
id ecaade2018_139
authors Cudzik, Jan and Radziszewski, Kacper
year 2018
title Artificial Intelligence Aided Architectural Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 77-84
doi https://doi.org/10.52842/conf.ecaade.2018.1.077
summary Tools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools that suit their specific needs. In some cases, they use artificial intelligence. Despite many similarities, they have different advantages and disadvantages. Therefore the change in the design process is more visible and unseen before solution are brought in the discipline. The article presents methods of applying the selected artificial intelligence algorithms: swarm intelligence, neural networks and evolutionary algorithms in the architectural practice by authors. Additionally research shows the methods of analogue data input and output approaches, based on vision and robotics, which in future combined with intelligence based algorithms, might simplify architects everyday practice. Presented techniques allow new spatial solutions to emerge with relatively simple intelligent based algorithms, from which many could be only accomplished with dedicated software. Popularization of the following methods among architects, will result in more intuitive, general use design tools.
keywords computer aideed design; artificial intelligence,; evolutionary algorithms; swarm behaviour; optimization; parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
doi https://doi.org/10.52842/conf.acadia.2018.226
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaaderis2018_104
id ecaaderis2018_104
authors Hollberg, Alexander, Hildebrand, Linda and Habert, Guillaume
year 2018
title Environmental design - Lessons learned from teaching LCA
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 65-74
keywords Architects largely define the environmental impact a building will cause throughout its life cycle. Especially decisions taken in early design stages have a great influence on the environmental performance. The integration of environmental assessment into the design process requires adequate tools and basic knowledge of the architects using them. This paper discusses both aspects by means of two case studies with students. In both case studies, the goal was to use Life Cycle Assessment (LCA) to optimize the environmental performance of the building in the design process. The results of the first case study proved the benefits of using LCA-based information for decision-making, but some issues of using the tool during the design process became evident. In the second case study an improved LCA-tool was employed that proved to be applicable by all students. Nevertheless, only one group used the feedback to optimize the building design in an iterative process as intended by the supervisors. This leads to the conclusion that the difficulty of environmental design shifted from a lack of adequate assessment tools to the question of the design approach.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_161
id caadria2018_161
authors Huang, Xiaoran, White, Marcus and Burry, Mark
year 2018
title Design Globally, Immerse Locally - A Synthetic Design Approach by Integrating Agent Based Modelling with Virtual Reality
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 473-482
doi https://doi.org/10.52842/conf.caadria.2018.1.473
summary The last three decades have witnessed the explosion of technology and its impact on the architecture discipline which has drastically changed the methods of design. New techniques such as Agent-based modeling (ABM) and Virtual Reality (VR) have been widely implemented in architectural and urban design domains, yet the potential integration between these two methods remains arguably unexploited. The investigation in this paper aims to probe the following questions: How can architects and urban designers be informed more comprehensively by melding ABM and VR techniques at the preliminary/conceptual design stage? Which platform is considered more appropriate to facilitate a user-friendly system and reduces the steep learning curve? And what are the potential benefits of this approach in architectural education, particularly for the design studio environment? With those questions, we proposed a prototype in Unity, a multi-platform development tool that originated from the game industry, to simulate and visualize pedestrian behaviors in urban environments with immersive design experience and tested it in a scenario-based case study. This approach has also been further tested in an architectural design studio, demonstrating its technical feasibility as well as the potential contributions to the pedagogy.
keywords Agent based modelling; Virtual Reality; Urban Design
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2018_1875
id sigradi2018_1875
authors Kalantari, Cruze-Garza; Banner, Pamela; Contreras-Vidal, Jose Luis
year 2018
title Computationally Analyzing Biometric Data and Virtual Response Testing in Evaluating Learning Performance of Educational Setting Through
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 390-396
summary Due to construction costs, the human effects of innovations in architectural design can be expensive to test. Post-occupancy studies provide valuable data about what did and did not work in the past, but they cannot provide direct feedback for new ideas that have not yet been attempted. This presents designers with something of a dilemma. How can we harness the best potential of new technology and design innovation, while avoiding costly and potentially harmful mistakes? The current research use virtual immersion and biometric data to provide a new form of extremely rigorous human-response testing prior to construction. The researchers’ hypothesis was that virtual test runs can help designers to identify potential problems and successes in their work prior to its being physically constructed. The pilot study aims to develop a digital pre-occupancy toolset to understand the impact of different interior design variables of learning environment (independent variables) on learning performance (dependent variable). This project provides a practical toolset to test the potential human impacts of architectural design innovations. The research responds to a growing call in the field for evidence-based design and for an inexpensive means of evaluating the potential human effects of new designs. Our research will address this challenge by developing a prototype mobile brain-body imaging interface that can be used in conjunction with virtual immersion.
keywords Signal Processing; Brain; EEG; Virtual Reality; Big Data; Learning Performance
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_201
id ecaade2018_201
authors Mansourimajoumerd, Parinaz and Mahdavinejad, Mohammadjavad
year 2018
title Kinetic Architecture - Reinterpreting Persian Mathematics and Astronomy
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 605-612
doi https://doi.org/10.52842/conf.ecaade.2018.1.605
summary The world where humans live in, is constantly changing. In order to interact with these conditions, it is necessary for the architects to create an environment with sufficient dynamics based on the needs and behavior of its users. Kinetic architecture allows occupants to experience new environments which could cause raising the efficiency of the buildings. Therefore, constructions with kinetic elements could serve better utilitarian purposes in different fields.In the following essay, studies are about using kinetic design and fabrication method in one project despite ordinary ways regard to the two main points; 1. The impact of Khayyam's mathematics and astronomy on the proposed kinetic architecture and 2. Creating interaction Between Indigenous ideas and Contemporary Architecture in Khayyam Memorial Pavilion. As a result, a model is designed and several prototypes have been built.This essay illustrates that with making a connection among architecture and other fields of study could lead designers to be more creative according to the existing limitation in each project.
keywords Kinetic architecture; Interactive architecture; Hyperboloid modules; Omar Khayyam
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2018_1451
id sigradi2018_1451
authors Massara Rocha, Bruno; Simão de Lima, Camilo
year 2018
title Open Design: Principles, Interfaces and Values Analysis
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1241-1249
summary This article discuss in which terms design, distribution and production processes have changed after the great technological revolution in a post-industrial era in order to become more democratic and easily shared. After a brief analysis of the economic impact brought by this digital revolution, the article presents newly design values and production environments that emerged from it. We focus in the Open Design movement to show how its process introduce new ways to create and produce architecture. The main idea is to enlighten and explain how Open Design enhances innovation and foster a new democratic practice based on freedom, collaboration and experimentation.
keywords Shared project; Open design; Maker movement; Digital fabrication; Cognitive capitalism
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_194
id ecaade2018_194
authors Paixao, Jose, Fend, Florian and Hirschberg, Urs
year 2018
title Break It Till You Make It - A design studio for problem-finding
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 753-762
doi https://doi.org/10.52842/conf.ecaade.2018.1.753
summary In a context where architectural education is undergoing great transformations due to the impact of digital technology, the authors present a design studio model that rather than teaching how to operate the tool en vogue focuses on the formulation of questions. Traditional pedagogic practices have privileged answers in knowledge production, but an alternative is proposed. A methodology was devised in which problem-finding is moved forward by an iterative process of experimental making. This was tested in Winter 2017 with results showing a diversity in questions raised, but also the premature discontinuation of several paths of inquiry. Only one completed all 6 planned iterations and benefited from the final, in which the building of a 1:1 prototype informed its research focus. The conclusions highlight the contribution of this model in preparing future practitioners with an attitude of inquiry and drive to experiment that will resist obsoleteness from rapid technological developments.
keywords Architectural Education; Design Studio; Problem-Based Learning; Material Systems; Digital Fabrication; Wood Construction
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2018_409
id ecaade2018_409
authors Sousa, José Pedro, Azambuja Varela, Pedro de, Carvalho, Jo?o, Santos, Rafael and Oliveira, Manuel
year 2018
title Mass-customization of Joints for Non-Standard Structures through Additive Manufacturing - The Trefoil and the TriArch projects
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 197-204
doi https://doi.org/10.52842/conf.ecaade.2018.1.197
summary Due to recent advancements, additive manufacturing technologies (AM) have finally addressed the scale and materiality in architecture. The exploration of its capabilities has balanced between the idea of printing entire structures and buildings, and that of printing just a set of selected parts that will integrate and affect the final construction. In the context of the latter approach, this paper present a research work developed by the Digital Fabrication Laboratory (DFL) at FAUP, which is focused in the design and fabrication of non-standard structures. By discussing the relevance of non-standardization in architecture, the paper describes and illustrates two projects that explore the mass production of customized joints through computational design methods and AM technologies - the TREFOIL and the TRI-ARCH structures. By focusing the attention just in the smallest component of a structure, the paper argues about the short-term potential of the real impact of AM technologies in the design thinking and materialization of architectural structures.
keywords Non-standard structures; Additive Manufacturing; 3D Printing; Computational Design; Mass Customization
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac201816202
id ijac201816202
authors Tamke, Martin; Paul Nicholas and Mateusz Zwierzycki
year 2018
title Machine learning for architectural design: Practices and infrastructure
source International Journal of Architectural Computing vol. 16 - no. 2, 123-143
summary In this article, we propose that new architectural design practices might be based on machine learning approaches to better leverage data-rich environments and workflows. Through reference to recent architectural research, we describe how the application of machine learning can occur throughout the design and fabrication process, to develop varied relations between design, performance and learning. The impact of machine learning on architectural practices with performance-based design and fabrication is assessed in two cases by the authors. We then summarise what we perceive as current limits to a more widespread application and conclude by providing an outlook and direction for future research for machine learning in architectural design practice.
keywords Machine learning, robotic fabrication, design-integrated simulation, material behaviour, feedback, Complex Modelling
series journal
email
last changed 2019/08/07 14:03

_id caadria2018_107
id caadria2018_107
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2018
title SLAM-Based MR with Animated CFD for Building Design Simulation
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 391-400
doi https://doi.org/10.52842/conf.caadria.2018.1.391
summary In advanced society, the existing building stock has huge social, economic, and environmental impact. There is a high demand for stock renovation, which gives existing buildings new lives, rather than building new ones. During the renovation process, it is necessary to simultaneously achieve architectural, facilities, structural, and environmental design in order to accomplish a healthy, comfortable, and energy-saving indoor environment, prevent delays in problem solving, and achieve a timely feedback process. This study tackled the development of an integrated system for stock renovation by considering computational fluid dynamics (CFD) and Mixed Reality (MR) in order to allow the simultaneous design of a building plan and thermal environment. The CFD analysis enables the simulation of the indoor thermal environment, including the effects of daylight and ventilation. The MR system visualizes the simulation results intuitively and makes renovation projects perform in a very efficient manner with regard to various stakeholders. In addition, a new CFD animation generation method is proposed in MR system, in order for users to consider the entirety of changes in the thermal environment.
keywords thermal environment; computational fluid dynamics (CFD); mixed reality (MR); daylight; ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id lasg_whitepapers_2019_063
id lasg_whitepapers_2019_063
authors Börner, Katy; and Andreas Bueckle
year 2019
title Envisioning Intelligent Interactive Systems; Data Visualizations for Sentient Architecture
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.063 - 088
summary This paper presents data visualizations of an intelligent environment that were designed to serve the needs of two stakeholder groups: visitors wanting to understand how that environment operates, and developers interested in optimizing it. The visualizations presented here were designed for [Amatria], a sentient sculpture built by the Living Architecture Systems Group (LASG) at Indiana University Bloomington, IN, USA, in the spring of 2018. They are the result of an extended collaboration between LASG and the Cyberinfrastructure for Network Science Center (CNS) at Indiana University. We introduce [Amatria], review related work on the visualization of smart environments and sentient architectures, and explain how the Data Visualization Literacy Framework (DVL-FW) can be used to develop visualizations of intelligent interactive systems (IIS) for these two stakeholder groups.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_417708 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002