CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 596

_id caadria2018_243
id caadria2018_243
authors Yin, Shi and Xiao, Yiqiang
year 2018
title Research on the Impact of Traditional Urban Geometry on Outdoor Thermal Environment - Case Study of Neighbourhoods with Arcade Street in South China
doi https://doi.org/10.52842/conf.caadria.2018.2.503
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 503-512
summary With the deterioration of urban environment gradually in these decades, the demand for improving the outdoor thermal environment is increasing. The traditional architecture and urban planning contain abundant climate responding strategy, while current studies about it are still insufficient. Furthermore, many researches had profound results on how different urban design parameters would impact outdoor thermal comfort, but only a few of them could achieve an effective transformation into a practical scenario. Thus, this paper attempts to present the impact of different traditional urban form, which is extracted from different neighborhoods with arcade street in south China, on the outdoor thermal environment, through field measurements and climatic simulation with Envi-met. Moreover, these different complex urban forms were transferred into a simplified form with uniform character and simulating based on the same boundary condition. Comparing the SVF (Sky View Factor) and PET (Physiological Equivalent Temperature) of each point, the organic urban form would lead better thermal environment than others on the main road. On the other hand, the SVF of a point is not the only one aspect of its PET, which related with the form of urban geometry as well.
keywords Climate Responsive Urban Design; Traditional Arcade-Street Neighborhood; Urban Geometry; Outdoor Thermal Comfort
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_261
id ecaade2018_261
authors Austern, Guy, Capeluto, Isaac Guedi and Grobman, Yasha Jacob
year 2018
title Rationalization and Optimization of Concrete Façade Panels
doi https://doi.org/10.52842/conf.ecaade.2018.1.727
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 727-734
summary The presented research develops methods for introducing fabrication constraints into architectural design, a process often referred to as design rationalization. In the first stage of the research, a computational method for evaluating the fabrication potential of geometries was developed. The method predicts the feasibility, material use and machining time of a geometry in relation to different fabrication techniques. It uses geometric properties to mathematically estimate these parameters without simulating the actual machining. The second stage of the research describes processes for adapting architectural designs to their fabrication technique. The evaluation method previously developed is used as a fitness criterion for a computational optimization algorithm aimed at adapting concrete façade elements to the fabrication constraints of their molds. A case study demonstrates how the optimization process succeeded in improving the feasibility of different geometries within a time-frame suitable to the architectural design process, and without significant changes to the initial design.
keywords Optimization; Digital Fabrication; Rationalization; Computational Design Process
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2018_162
id caadria2018_162
authors Hawton, Dominic, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Shared Immersive Environments for Parametric Model Manipulation - Evaluating a Workflow for Parametric Model Manipulation from Within Immersive Virtual Environments
doi https://doi.org/10.52842/conf.caadria.2018.1.483
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
summary Virtual reality (VR) and augmented reality (AR) provide designers with new visual mediums through which to communicate their designs. There is great potential for these mediums to positively augment current visual communication methods by improving remote collaboration. Enabling designers to interact with familiar computational tools through external virtual interfaces would allow them to both calibrate design parameters and visualise parametric outcomes from within the same immersive virtual environment. The current research outlines a workflow for parametric manipulation and mesh replication between immersive applications developed in the Unity game engine and McNeel's Grasshopper plugin. This paper serves as a foundation for future research into integrating design tools with external VR and AR applications in an effort of enhancing remote collaborative designs.
keywords Augmented Reality; Virtual Reality; Parametric Design; Procedural; Grasshopper
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2018_059
id caadria2018_059
authors Hwang, Ji-Hyoun and Lee, Hyunsoo
year 2018
title A Parametric Design Model for Numerically Measuring the Design Attributes of Prospect-Refuge
doi https://doi.org/10.52842/conf.caadria.2018.2.577
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 577-586
summary The prospect-refuge is a concept to explain the preferred environment that provides restoration, concentration and safety, ultimately improving comfort. We focus on fenestration and ceiling height to provide the good prospect-refuge conditions simultaneously for interior spaces. The aim of this paper is to develop a design model by adjusting the window's design properties and ceiling height. Parametric design model and 3D visibility are employed to propose a method that quantify the prospect-refuge and presents the design alternatives of the window and ceiling. First, we explain parameters and an algorithm of a parametric model for measuring the 3D visibility. Second, this paper presents a way to generate design alternatives of the window and ceiling height. Finally, this research evaluates and analyses design alternatives of the window and ceiling height. With the parametric design technology for measuring prospect-refuge, proposed method could present various design alternatives in interior spaces, simultaneously considering the concept of prospect-refuge.
keywords parametric design; window design; ceiling height; prospect-refuge; design alternatives
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_067
id caadria2018_067
authors Lu, Shuai and Guo, Cong
year 2018
title Investigation on the Potential of Improving Daylight Efficiency of Office Buildings by Optimized Curved Facades
doi https://doi.org/10.52842/conf.caadria.2018.2.113
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 113-121
summary With the rapid development of digital design methods, irregular curved shapes have been more and more widely used in buildings, which not only enriches the appearances of buildings, but also provide new possibilities of improving building performance by shape designs. However, existing researches regarding building performance and shapes mostly focus on regular shapes, while curved shapes are rarely explored. This paper aims to employ design optimization method to explore the improvement of building performance that curved shapes could contribute. Specifically, office buildings are chosen as an example and the potential of improving the daylight efficiency of them by optimized curved facades are investigated. Three major cities and two orientations are involved in the investigation. The results prove that curved facades do have significant potential to improve the daylight efficiency of office buildings, and an average improvement of 0.2032 is achieved by the optimized curved facades in the 6 cases conducted in this research in terms of the area-weighted average UDI (useful daylight illuminance) compared with the same building with plane facade.
keywords Curved Facade; Daylight; Building Performance; Design Optimization; Office Building
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_241
id caadria2018_241
authors Molina, Kalani and Park, Hyoung-June
year 2018
title Sparking Off Walkability - A Computational Approach of Urban Network Analysis on Walkability in TOD Neighborhoods
doi https://doi.org/10.52842/conf.caadria.2018.2.391
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 391-400
summary Existing and proposed Transit Oriented Development (TOD) neighborhoods of Waipahu Transit Center Station in Honolulu, Hawaii are revisited by a proposed computational approach of Urban Network Analysis (UNA). The four measures of UNA: reach, gravity, closeness, and straightness are employed for investigating walkability in these given urban neighborhoods. In each measure, 1) accessibility to transportation 2) intersections frequency, 3) residential building density, 4) commercial building density, and 5) Industrial buildings density are delineated and proposed as vital factors for improving planning and design decisions on walkability patterns around the TOD neighborhoods.
keywords Urban Network Analysis, Walkability, Transit Oriented Develoment
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2018_1676
id sigradi2018_1676
authors Hudson, Roland; Velasco, Rodrigo
year 2018
title Thermal Comfort Clustering; Climate Classification in Colombia
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 590-595
summary Our goal is to develop a climatic classification system that extends understanding of human comfort and guides the design of buildings to provide greater thermal comfort to occupants. We propose that using k-means clustering with multivariate climate data a classification system can be defined to objectively represent comfort zones in the tropics. Our study focuses on Colombia, but the approach extends to other countries located in the tropics.
keywords Human comfort; climate classification; clustering
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2023_10
id ecaade2023_10
authors Sepúlveda, Abel, Eslamirad, Nasim and De Luca, Francesco
year 2023
title Machine Learning Approach versus Prediction Formulas to Design Healthy Dwellings in a Cold Climate
doi https://doi.org/10.52842/conf.ecaade.2023.2.359
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 359–368
summary This paper presents a study about the prediction accuracy of daylight provision and overheating levels in dwellings when considering different methods (machine learning vs prediction formulas), training, and validation data sets. An existing high-rise building located in Tallinn, Estonia was considered to compare the best ML predictive method with novel prediction formulas. The quantification of daylight provision was conducted according to the European daylight standard EN 17037:2018 (based on minimum Daylight Factor (minDF)) and overheating level in terms of the degree-hour (DH) metric included in local regulations. The features included in the dataset are the minDF and DH values related to different combinations of design parameters: window-to-floor ratio, level of obstruction, g-value, and visible transmittance of the glazing system. Different training and validation data sets were obtained from a main data set of 5120 minDF values and 40960 DH values obtained through simulation with Radiance and EnergyPlus, respectively. For each combination of training and validation dataset, the accuracy of the ML model was quantified and compared with the accuracy of the prediction formulas. According to our results, the ML model could provide more accurate minDF/DH predictions than by using the prediction formulas for the same design parameters. However, the amount of room combinations needed to train the machine-learning model is larger than for the calibration of the prediction formulas. The paper discuss in detail the method to use in practice, depending on time and accuracy concerns.
keywords Optimization, Daylight, Thermal Comfort, Overheating, Machine Learning, Predictive Model, Dwellings, Cold Climates
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaaderis2023_11
id ecaaderis2023_11
authors Sepúlveda, Abel, Eslamirad, Nasim, Seyed Salehi, Seyed Shahabaldin, Thalfeldt, Martin and De Luca, Francesco
year 2023
title Machine Learning-based Optimization Design Workflow based on Obstruction Angles for Building Facades
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 15–24
summary This paper proposes a ML-based optimization design workflow based on obstruction angles for the optimization of building facades (i.e. g-value and window width). The optimization output consists of the optimal clustering of windows in order to ensure a desired level of daylight provision according to method 2 defined in the EN17307:2018 (i.e. based on Spatial Daylight Autonomy: sDA) and to not exceed a maximum level of specific cooling capacity (SCC). The independent variables or design parameters of the parametric model are: room orientation/dimensions, window dimensions, and obstruction angle (??). The ML prediction models were trained and tested with reliable simulation results using validate softwares. The total number of room combinations is 61440 for sDA and SCC simulations. The development of reliable (90% of right predictions) ML predictive models based on decision tree technique were calibrated. The optimal clustering of windows was done first by floors and secondly by the designer’s need to homogenize the external facade with similar glazing properties and window sizes, having impact on the annual heating consumption. The proposed method help designers to make accurate and faster design decisions during early design stages and renovation plans.
keywords optimization, daylight, thermal comfort, cooling capacity, machine-learning predictive model, office buildings, cold climates
series eCAADe
email
last changed 2024/02/05 14:28

_id sigradi2018_1353
id sigradi2018_1353
authors Verissimo, Cristina
year 2018
title Cork: New uses in Architecture
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 9780-984
summary Cork usage is one of the most promising trends in sustainable development of materials, due to its unique natural properties, exceptionally good environmental qualities and its high potential to incorporate innovative technology. It can be reused, and it is built with renewable and reusable materials that contain lower levels of embedded energy and carbon. Today amongst other uses we see cork used as a textile for clothing, in automobile parts, and as a thermal shield in space crafts. However, there is still a lack of information and diffusion within the engineering and architecture sectors; stakeholders lack awareness of how to use and select cork materials for construction, compared with other competing products. This research plans to explore future cork industry developments, cork recycling and new cork-based materials, which are still in various stages of development with enormous potential for construction as an eco-friendly solution. The aim is to test or adapt them to be used in construction, with an emphasis in CAD/CAM fabrication processes. Hoping that in the future there will be greater application in architecture and eventually will contribute to greater sustainability in the construction business as well as the cork sector.
keywords Cork; Sustainable material; Materials engineers design; Architecture; Culture
series SIGRADI
email
last changed 2021/03/28 19:59

_id caadria2018_082
id caadria2018_082
authors Zhu, Li and Yang, Yang
year 2018
title Optimization Design Study of Lightweight Temporary Building Integrated with PCMS Through CFD Simulation
doi https://doi.org/10.52842/conf.caadria.2018.2.155
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 155-164
summary In fact, the phase change materials (PCMs) integrated in the building envelope structure can decrease the buildings' energy consumption by enhancing thermal energy storage capacity, which has been acknowledged and appreciated by many engineers and architects. To achieve a better practical application effect under the minimum cost principle and provide a different design method based on indoor thermal discomfort evaluation results for stakeholders, this paper numerically test the application effect of composite envelope under Tianjin climate through commercial computational fluid dynamic soft (Fluent). Further, parameter sensitivity to thermal performance of the composite envelope and indoor thermal discomfort are investigated in this paper, and two different evaluation indicators are introduced and used here. The numerical results obtained in this paper support the high potential of using PCM in lightweight temporary buildings and highlight the further optimization design work.
keywords Optimization design; Lightweight temporary building; PCMs; CFD simulation
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
doi https://doi.org/10.52842/conf.caadria.2018.2.185
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2018_1702
id sigradi2018_1702
authors Câmara Benevides, Caroline; Ribeiro Roquete, Suellen; Mourão Moura, Ana Clara; Romero Fonseca Motta, Silvio
year 2018
title Comparative Analysis of Geospatial Visualization Tools for Urban Zoning Planning
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 609-616
summary The collective management of urban environment is a challenging task. Although considering the individuals and their values helps to build environments that are closer to the user's expectations, the identification of these aspects is not an easy task. Considering the potential of exploring visualization tools to support public participation, this paper compares two different 3D tools based on parametric modeling. Reinforcing the relevancy of both methods in promoting the visualization through the process of regulating the urban landscape resulting from the urban parameters, this paper aims to evaluate their performances concerning time consumed, training requirements, results and applicability.
keywords 3D Modeling; Parametric Modeling; CityEngine; Grashopper3D; Visualization
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_347
id ecaade2018_347
authors Dokonal, Wolfgang
year 2018
title Do Training Bikes Dream of Electric Cities ?
doi https://doi.org/10.52842/conf.ecaade.2018.2.789
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 789-794
summary Virtual reality (VR), Augmented Reality (AR) and Mixed Reality is making the headlines in the newspapers and magazines today. But unlike 25 years ago when the first VR rage started with the first Cave Automatic Virtual Environments (CAVE) infrastructures VR is now a technique that is available at very low costs.Especially the recent advances and developments in low cost VR hardware mainly the Head mounted displays (HMD), in particular those that use mobile phones but also the PC based systems like the Oculus Rift and the HTC Vive together with recent software developments allow this change. Naturally this is based on the interest of the Gaming Industry and the big players in the smartphone industry. But at the moment there are nearly no tools for architects available within these systems. In our point of view there is the big potential that these technologies can give new opportunities to architects and designers to use VR and AR as part of their design toolbox and not only as a presentation tool. For us this is the most important aspect. In our projects we therefore try to develop a workflow that can be easily used even without programming and scripting skills.
keywords Virtual Reality; Interfaces
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2018_193
id ecaade2018_193
authors Ostrowska-Wawryniuk, Karolina and Nazar, Krzysztof
year 2018
title Generative BIM Automation Strategies for Prefabricated Multi-Family Housing Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.247
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 247-256
summary The increasing housing shortage in contemporary Poland calls for efficient ways of design and construction. In the context of time efficiency and shrinking manpower, prefabrication is considered as one of the means of introducing low and middle income housing to the market. The article presents the process of developing an experimental tool for aiding multi-family housing architectural design with the use of prefabrication. We use the potential of BIM technology as a flexible environment for comparing multiple design options and, therefore, supporting the decision-making process. The presented experiment is realized in the Autodesk Revit environment and incorporates custom generative scripts developed in Dynamo-for-Revit and Grasshopper. The prototype tool analyzes an input Revit model and simulates a prefabricated alternative based on the user-specified boundary conditions. We present our approach to the analyzing and the splitting of the input model as well as five different strategies of performing the simulation within the Revit environment.
keywords Building Information Modeling; generative BIM; residential building design; prefabrication; design automation; Dynamo
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2018_295
id ecaade2018_295
authors Dezen-Kempter, Eloisa, Cogima, Camila Kimi, Vieira de Paiva, Pedro Victor and Garcia de Carvalho, Marco Antonio
year 2018
title BIM for Heritage Documentation - An ontology-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.1.213
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 213-222
summary In the recent decades, the high-resolution remote sensing, through 3D laser scanning and photogrammetry benefited historic buildings maintenance, conservation, and restoration works. However, the dense surface models (DSM) generated from the data capture have nonstructured features as lack of topology and semantic discretization. The process to create a semantically oriented 3D model from the DSM, using the of Building Information Model technology, is a possibility to integrate historical information about the life cycle of the building to maintain and improving architectural valued building stock to its functional level and safeguarding its outstanding historical value. Our approach relies on an ontology-based system to represent the knowledge related to the building. Our work outlines a model-driven approach based on the hybrid data acquisition, its post-processing, the identification of the building' main features for the parametric modeling, and the development of an ontological map integrated with the BIM model. The methodology proposed was applied to a large-scale industrial historical building, located in Brazil. The DSM were compared, providing a qualitative assessment of the proposed method.
keywords Reality-based Surveying; Ontology-based System; BIM; Built heritage management
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_259
id caadria2018_259
authors Doyle, Shelby, Forehand, Leslie, Hunt, Erin, Loughrey, Nick, Schneider, Sarah and Senske, Nick
year 2018
title Cyborg Sessions - A Case Study for Gender Equity in Technology
doi https://doi.org/10.52842/conf.caadria.2018.1.071
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 71-80
summary This paper discusses the ongoing lack of gender equity in architecture - specifically the shortfall of women in design technology - and presents a robotics workshop in the United States as a case study and method to challenge this inequality. The goals of this paper are to 1.) define a research agenda for documenting and understanding gender equity in design technology and 2.) to offer evidence-based strategies from STEM education and this architecture case study for improving the representation of women in this field.
keywords Gender; Equality; Women; Feminism; Robotics
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2018_381
id ecaade2018_381
authors Jenney, Sarah Louise, Mühlhaus, Michael, Seifert, Nils, Petzold, Frank and Wiethoff, Alexander
year 2018
title Escaping Flatlands - Interdisciplinary Collaborative Prototyping Solutions to Current Architectural Topics
doi https://doi.org/10.52842/conf.ecaade.2018.1.323
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 323-332
summary The paper describes the interdisciplinary course, Escaping Flatlands, focusing on improving communication between students, who were either from the field of architecture or media informatics and human-computer interaction. There were two underlying themes. The first, the integration and augmentation of digital media and haptic models, escaping the flatland of classic architectural media such as paper or screens. The second theme, expert-laymen communication in public participation, was addressed in the contextual theme and content of the course task, the communication between students of different fields, and the presentation of robust working prototypes at an architectural exhibition. Students, in groups of four, developed three interactive architectural models enhanced with digital content. The course resulted in a number of benefits to students, the chairs, and implications for research. It also led to further collabourations between the two universities involved, including cross-over Bachelor and Master Thesis.
keywords tangible interfaces; human-computer interaction; smart city; public participation; model making; augmented reality
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_284
id caadria2018_284
authors Mühlhaus, Michael, Jenney, Sarah Louise and Petzold, Frank
year 2018
title Take a Look Through My Eyes: An Augmented Reality Planning Communication System
doi https://doi.org/10.52842/conf.caadria.2018.1.379
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 379-388
summary Participation and communication in urban planning, visualisation, spatial perception, and motivation through gamification are discussed and system requirements derived. An augmented reality multi-client communication prototype is described improving transparency and utilising local expertise in planning processes. The selection, processing and visualisation of planning data takes individual stakeholders knowledge and skill levels, cultural backgrounds, and interests into account to facilitate understanding through moderation and the ability to change perspective.
keywords Augmented Reality; Gameification; Communication; Public Participation; Visualisation
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_450851 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002