CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2018_434
id ecaade2018_434
authors Hünkar, Ertunç and Figueiredo, Bruno Acácio Ferreira
year 2018
title 3D Printing of High Strength and Multi-Scaled Fragmented Structures
doi https://doi.org/10.52842/conf.ecaade.2018.1.173
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 173-178
summary Our research aims to push the limits of 3D printing towards the structural design and optimization. Additive manufacturing has an unique feature which is printing multi-faced complex geometries as easy as simple ones. Therefore additive manufacturing creates the chance of producing really small scaled complex forms. In a structural network, it can be easily understood that the more geometric variations to respond stress, the more adaptive structure will become to respond structural needs. The structural reaction is to be fictionalized by procedural operations and analysis that will be a tool to design multi-scaled fragmented structures. Those operations is to use the structural analysis and material reactions. Their iteration with the overall geometry will form the geometric generations. However the verification of the generations as outcomes of a real 3D printer is crucial. To verify, the precision of additive manufacturing should be sensitive enough that the structural element will function as it's simulated in computer with the algorithm. The sensitivity is important because, even couple of micro-sized problems can cause bigger ones in the structural element itself. The combination of all these variables can enable an initial geometry, to be able to adapt the stuructural needs in every additive generation.
keywords Additive Manufacturing(AM); Structural Optimization; Selective Laser Sintering(SLS); Structural Design; Shape Grammars; Design Computation
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_125
id ecaade2018_125
authors Khoo, Chin Koi and Shin, Jae-Won
year 2018
title Designing with Biomaterials for Responsive Architecture - A soft responsive "bio-structural" hydrogel skin
doi https://doi.org/10.52842/conf.ecaade.2018.2.285
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 285-292
summary Synthetic biomaterials are not only widely explored in tissue engineering, but also present important opportunities in responsive architecture, especially soft structures and skins. In this paper we present how water-containing hydrogels can be adapted to digital fabrication techniques to design a soft responsive skin with integrated skeleton and surface. This research project details preliminary investigation into how tough hydrogels with different material properties can be designed and incorporated into laser-cutting and 3D printing methods typically used in architectural design. The outcome of this research produces an early prototype of thermally sensitive, tough hydrogel skin that responds to environmental stimuli such as temperature and moisture. Our work provides initial insights into how a soft responsive "bio-structural" architectural skin can be designed by integrating actuation, structure, and skins.
keywords Biomaterials; digital fabriication; hydrogel; responsive architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_350
id acadia18_350
authors Seibold, Zach; Hinz, Kevin; García del Castillo y López, Jose Luis; Martínez Alonso, Nono; Mhatre, Saurabh; Bechthold, Martin
year 2018
title Ceramic Morphologies. Precision and control in paste-based additive manufacturing
doi https://doi.org/10.52842/conf.acadia.2018.350
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 350-357
summary Additive manufacturing techniques (AMT), commonly referred to as 3D printing, are emerging as a new area of study for the production of ceramic elements at the architectural scale. AMT may allow architectural designers to break from the established means of designing with ceramic elements – a process where designs are typically confined to a limited selection of building components produced by machine, die or fixture. In this paper, we report a method for the design and additive manufacture of customizable ceramic masonry elements via paste-based extrusion. A novel digital workflow allowed for precise control of part design, and generated manufacturing parameters such as toolpath geometry and machine code. 3D scans of a selection of elements provide an initial analysis of print fidelity. We discuss the current constraints of this process and identify several on-going research trajectories generated because of this research.
keywords work in progress, fabrication & robotics, materials/adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id ecaade2018_237
id ecaade2018_237
authors Beir?o, José, Mateus, Nuno and Siopa Alves, Jo?o
year 2018
title Modular, Flexible, Customizable Housing and 3D Printed - An experiment in architectural education
doi https://doi.org/10.52842/conf.ecaade.2018.1.381
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 381-390
summary Technological developments in construction always bring new expectations in terms of design possibilities. The use of digital tools both in design exploration and applied to explore new forms of computer controlled manufacture provide opportunities for the emergence of new tectonics. Because these transformations change our construction reality fast and with impacts never seen before, it is important that architectural education follows such change and prepares students for what will be their future really, making them capable to accept and incorporate the tectonic implications of digital tools and construction methods in the way they design. This paper shows a tutored approach to mass customized housing resorting to 3D printed parametric modular construction.Please write your abstract here by clicking this paragraph.
keywords caad education; mass customization; 3D printed housing
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_276
id acadia18_276
authors Bilotti, Jeremy; Norman, Bennett; Rosenwasser, David; Leo Liu, Jingyang; Sabin, Jenny
year 2018
title Robosense 2.0. Robotic sensing and architectural ceramic fabrication
doi https://doi.org/10.52842/conf.acadia.2018.276
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 276-285
summary Robosense 2.0: Robotic Sensing and Architectural Ceramic Fabrication demonstrates a generative design process based on collaboration between designers, robotic tools, advanced software, and nuanced material behavior. The project employs fabrication tools which are typically used in highly precise and predetermined applications, but uniquely thematizes the unpredictable aspects of these processes as applied to architectural component design. By integrating responsive sensing systems, this paper demonstrates real-time feedback loops which consider the spontaneous agency and intuition of the architect (or craftsperson) rather than the execution of static or predetermined designs. This paper includes new developments in robotics software for architectural design applications, ceramic-deposition 3D printing, sensing systems, materially-driven pattern design, and techniques with roots in the arts and crafts. Considering the increasing accessibility and advancement of 3D printing and robotic technologies, this project seeks to challenge the erasure of materiality: when mistakes or accidents caused by inconsistencies in natural material are avoided or intentionally hidden. Instead, the incorporation of material and user-input data yields designs which are imbued with more nuanced traces of making. This paper suggests the potential for architects and craftspeople to maintain a more direct and active relationship with the production of their designs.
keywords full paper, fabrication & robotics, robotic production, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_233
id ecaade2018_233
authors Kontiza, Iacovina, Spathi, Theodora and Bedarf, Patrick
year 2018
title Spatial Graded Patterns - A case study for large-scale differentiated space frame structures utilising high-speed 3D-printed joints
doi https://doi.org/10.52842/conf.ecaade.2018.2.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-46
summary Geometric differentiation is no longer a production setback for industrial grade architectural components. This paper introduces a design and fabrication workflow for non-repetitive large-scale space frame structures composed of custom-manufactured nodes, which exploits the advantages of latest advancements in 3D-printing technology. By integrating design, fabrication and material constraints into a computational methodology, the presented approach addresses additive manufacturing of functional industry-grade parts in short time, high speed and low cost. The resulting case study of a 4.5 x 4.5 x 2.5 m lightweight kite structure comprises 1380 versatile fully-customised connectors and outlines the manifold potential of additive manufacturing for architecture much bigger than the machine built space. First, after briefly introducing space frames in architecture, this paper discusses the computational framework of generating irregular space frames and parametric joint design. Second, it examines the advantages of MJF printing in conjunction with integrating smart sequencing details for the following assembly process. Finally, a conclusive outlook is given on improvements and further developments for bespoke 3D-printed space frame structures.
keywords 3D-printing; Multi-Jet Fusion; Space Frame; Graded Subdivision
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2018_316
id caadria2018_316
authors Yan, Chao, Zhang, Yunyu, Yuan, Philip F. and Yao, Jiawei
year 2018
title Virtual Motion - Shifting Perspective as an Instrument for Geometrical Construction
doi https://doi.org/10.52842/conf.caadria.2018.2.471
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 471-480
summary From the invention of projection to the emergence of digital technology, there's a clear correspondences among the transformations of visual representation paradigm in art, the developments of design instrument in architecture, and the human perception of time/space. Base on the examination of this particular historical trajectory, this paper focuses the working mechanism of shifting perspective as an alternative design instrument to explore the possibility of embedding time and motion into static form in digital age. Firstly, the paper reviews how the shifting perspective was introduced to represent space in modern western painting and photography. Then based on the research on shifting perspective, the paper develops a design tool, which would be able to translate motion into the particular geometrical feature of a generated 3D object. In the end, the paper brings further discussions about the formal and spatial effects brought by this new tool, and its potential to incorporate the perceptive image of human being into design process.
keywords Shape Study; Projective Geometry; Shifting Perspective; Motion; Time Dimension
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
doi https://doi.org/10.52842/conf.acadia.2018.312
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2018_292
id caadria2018_292
authors Eid Mohamed, Basem, ElKaftangui, Mohamed and Zureikat, Rana
year 2018
title {In}Formed Panels - Towards Rethinking the Precast Concrete Industry in the UAE
doi https://doi.org/10.52842/conf.caadria.2018.1.287
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 287-296
summary The convergence of digital design and fabrication technologies have offered architects and designers the means by which to develop customized architectural artifacts, ones that goes beyond the standards of "one size fits all". Such applications have been applied extensively in various architectural practices, and specifically in the realm of industrialized building production, given that they present a suitable model. Although unrecognized within standard precast concrete production, current research acknowledges the need for advanced computer applications for shifting the industry into a digitized process. This paper represent a critical phase of an ongoing research endeavor that aims at rethinking the precast concrete production in the UAE, and MENA region for housing typologies. The project explores possibilities of a new protocol that is focused from design to production, relying on performative design strategies, and possible optimized for large format 3D printing of concrete elements. The aim is to develop an integrated façade panels system that is tailored for design and production; an approach that goes beyond current industry practices.
keywords Precast Concrete; Industrialized Construction; Evolutionary Design; Optimization
series CAADRIA
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2018_439
id ecaade2018_439
authors Jose, Duarte, Nazarian, Shadi and Ashrafi, Negar
year 2018
title Designing Shelters for 3D-printing - A studio experiment
doi https://doi.org/10.52842/conf.ecaade.2018.2.031
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 31-38
summary This paper describes an architectural design studio experiment, developed with the aim of exploring the interrelationship between the architectural design of basic shelters and additive manufacturing technology (aka 3D printing) using concrete. This fabrication technology has been developed over the past twenty years in various locations Worldwide and there has been some experiments on its use for making buildings. However, these experiments are still very limited in number and results, in the sense that do not fully explore the potential of the technology and its impact on the way we design and make buildings. The studio evolved in the context of a larger project in which a multidisciplinary team of researchers is developing the technology for the additive manufacturing in concrete. Research evolves along three main thrusts of work on materials, systems, and design. The studio introduced students to these various aspects, examined their interrelationships, impacts, and applications in architectural design and construction of buildings. The hope was to collect more information and feedback to inform the overarching research. Results showed the feasibility of the technology and identified issues that need to be addressed in future research.
keywords additive manufacturing; 3D printing; concrete; design education
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
doi https://doi.org/10.52842/conf.acadia.2018.434
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2021_262
id caadria2021_262
authors Olthof, Owen, Globa, Anastasia and Stracchi, Paolo
year 2021
title SISTEMA NERVI - Sustainable Production of Optimised Floor Slabs Through Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2021.1.723
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 723-732
summary 'Sistema Nervi' (the Nervi System) invented by Pier Luigi Nervi greatly economised the production of complex concrete forms optimised in both material usage and structurally. However it did not translate well into other contexts due to labour and material considerations (Leslie, 2018). This paper explores novel methodologies of producing optimised floor slabs and concrete structures, using digital fabrication techniques, focusing on both labour economisation and sustainability principles. A module from the Australia Square lobby slab has been used as the set geometry and was reproduced using differing techniques of fabrication for a comparative study. The study was conducted at scale (1:20). The viability for production at full scale (1:1) for manufacturing is discussed. The assessment criteria for the tests are divided into four categories: Cost, Time, Performance, and Sustainability. 3D printing of PLA plastic and ceramic clay extrusion printing has been used to produce removable or degradable formworks. These technologies have been selected due to their current market availability and associated costs. This study hopes to introduce improved methodologies for producing optimized concrete forms, as well as the sustainability potentials of a degradable formwork such as ceramic clay. Both systems were ultimately able to produce workable formworks for optimised shapes and showed promise for reducing labour involved as well as presenting with material sustainability for discussion.
keywords Concrete formwork; Sustainability; Degradable formwork; Optimised concrete; Advanced fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2018_409
id ecaade2018_409
authors Sousa, José Pedro, Azambuja Varela, Pedro de, Carvalho, Jo?o, Santos, Rafael and Oliveira, Manuel
year 2018
title Mass-customization of Joints for Non-Standard Structures through Additive Manufacturing - The Trefoil and the TriArch projects
doi https://doi.org/10.52842/conf.ecaade.2018.1.197
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 197-204
summary Due to recent advancements, additive manufacturing technologies (AM) have finally addressed the scale and materiality in architecture. The exploration of its capabilities has balanced between the idea of printing entire structures and buildings, and that of printing just a set of selected parts that will integrate and affect the final construction. In the context of the latter approach, this paper present a research work developed by the Digital Fabrication Laboratory (DFL) at FAUP, which is focused in the design and fabrication of non-standard structures. By discussing the relevance of non-standardization in architecture, the paper describes and illustrates two projects that explore the mass production of customized joints through computational design methods and AM technologies - the TREFOIL and the TRI-ARCH structures. By focusing the attention just in the smallest component of a structure, the paper argues about the short-term potential of the real impact of AM technologies in the design thinking and materialization of architectural structures.
keywords Non-standard structures; Additive Manufacturing; 3D Printing; Computational Design; Mass Customization
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_221
id ecaade2018_221
authors Veliz Reyes, Alejandro, Gomaa, Mohamed, Chatzivasileiadi, Aikaterini, Jabi, Wassim and Wardhana, Nicholas Mario
year 2018
title Computing Craft - Early stage development of a robotically-supported 3D printing system for cob structures
doi https://doi.org/10.52842/conf.ecaade.2018.1.791
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 791-800
summary This paper focuses on an ongoing investigation exploring fabrication procedures and methodologies for robotically supported 3D printing utilising cob and other clay-based sustainable building materials, and is part of an ongoing collaboration between Cardiff University and the University of Plymouth. The methodology is that of a prototype development process within the framework of a feasibility studies call supported by the "Connected Everything: Industrial Systems in the Digital Age" EPSRC (Engineering and Physical Sciences Research Council) network. This project expects to not only reveal technological and design opportunities for 3D printed cob structures, but more broadly to engage with vernacular practice through digital means. As a result, this paper expects to contribute to the discipline by providing a framework engaging with digital practice as a way to bridge the knowledge gap between digitally-driven and vernacular modes of knowledge production, dissemination and representation.
keywords cob construction; robotics; 3D printing; vernacular architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
doi https://doi.org/10.52842/conf.acadia.2018.366
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1455
id sigradi2018_1455
authors Macêdo dos Santos, Deborah
year 2018
title 3D modeling in the design course context: A didactic experience
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1004-1009
summary The use of informatic tools (computer-aided design) may be associated to designer tasks since the first phase of product conception until industrial production. By using these CAD tools during the initial design phase, it is possible to predict, identify and correct mistakes. This is an interdisciplinary article that presents and discusses an experience as a teacher of graphics computation II, offered to product design students. It also reveals the didactic methods and psychological approaches applied to address this challenge: Achievement motivation, pedagogy of autonomy and learning pyramid. The didactic experiment was positive and lead to interesting learning results.
keywords Palavras-chave: 3D modeling; CAD; Product design; Teaching; Learning
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_634388 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002