CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 547

_id caadria2018_046
id caadria2018_046
authors Lu, Siliang and Cochran Hameen, Erica
year 2018
title Integrated IR Vision Sensor for Online Clothing Insulation Measurement
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 565-573
doi https://doi.org/10.52842/conf.caadria.2018.1.565
summary As one of the most important building systems, HVAC plays a key role in creating a comfortable thermal environment. Predicted Mean Vote (PMV), an index that predicts the mean value of the votes of a large group of persons on the thermal sensation scale, has been adopted to evaluate the built environment. Compared to environmental factors, clothing insulation can be much harder to measure in the field. The existing research on real-time clothing insulation measurement mainly focuses on expensive infrared thermography (IR) cameras. Therefore, to ensure cost-effectiveness, the paper has proposed a solution consisting of a normal camera, IR and air temperature sensors and Arduino Nanos to measure clothing insulation in real-time. Moreover, the algorithm includes the initialization from clothing classification with pre-trained neural network and optimization of the clothing insulation calculation. A total of 8 tests have been conducted with garments for spring/fall, summer and winter. The current results have shown the accuracy of T-shirt classification can reach over 90%. Moreover, compared with the results with IR cameras and reference values, the accuracies of the proposed sensing system vary with different clothing types. Research shall be further conducted and be applied into the dynamic PMV-based HVAC control system.
keywords clothing insulation; skin temperature; clothing classification; IR temperature sensor; Optimization
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia18_424
id acadia18_424
authors Bucklin, Oliver; Drexler, Hans; Krieg, Oliver David; Menges, Achim
year 2018
title Integrated Solid Timber. A multi-requisite system for the computational design,fabrication, and construction of versatile building envelopes
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 424-433
doi https://doi.org/10.52842/conf.acadia.2018.424
summary The paper presents the development of a building system made from solid timber that fulfils the requirements of modern building skins while expanding the design possibilities through innovation in computational design and digital fabrication. Multiple strategies are employed to develop a versatile construction system that generates structure, enclosure and insulation while enabling a broad design space for contemporary architectural expression. The basic construction unit augments the comparatively high insulation values of solid timber by cutting longitudinal slits into beams, generating air chambers that further inhibit thermal conductivity. These units are further enhanced through a joinery system that uses advanced parametric modeling and computerized control to augment traditional joinery techniques. Prototypes of the system are tested at a building component level with digital models and physical laboratory tests. It is further evaluated in a demonstrator building to test development and further refine design, fabrication and assembly methods. Results are integrated into proposals for new methods of implementation. The results of the research thus far demonstrate the validity of the strategy, and continuing research will improve its viability as a building system.
keywords full paper, materials and adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
doi https://doi.org/10.52842/conf.acadia.2020.1.340
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2021_226
id sigradi2021_226
authors Pincheira, Milena, Alarcón, Catalina, Rivera, María Isabel and Martínez, Andrea
year 2021
title Daylighting and the Elderly: A Study of Daylight Accessibility and Envelope Retrofit in Southern Chile's Senior Home
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1333–1344
summary In the next 25 years, the elderly population will increase on average to 65 thousand people annually in Chile (INE, 2018). Their independent living is jeopardized partially for diminished visual capacity that difficult spatial perception. Although light does not correct vision impairment, adequate light levels can respond to the needs of older people as preventing visual errors. This study evaluates daylighting availability in an assisting living residence in a southern city in Chile. A quantitative approach resulted in the identification of envelope-retrofit strategies that allow achieving recommended levels of natural lighting, particularly in shared spaces where residents spend most of the day. The results show that it would be possible to achieve better light availability, as it also allows for a better understanding of the contributions of the building envelope. Finally, the study outlines recommendations for future retrofits that meet requirements for visual comfort for a growing senior population.
keywords Daylighting Accessibility, Senior Home, Daylighting Strategies, Visual Comfort, Computational Simulation.
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1806
id sigradi2018_1806
authors Barbosa Cabral, Sthefane Adrielly; Alejandro Nome, Carlos; Queiroz, Natália
year 2018
title Pilot study of numerical modeling tool to evaluate the thermal performance of walls according to Brazilian standards
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 286-293
summary The paper discusses a numerical modeling tool to evaluate thermal performance of building envelope according to Brazilian NBR15.220 and NBR 15.575 standards. Contemporary integrated design processes require the development of early design stage decision support mechanisms in order to optimize building performance. The development of the proposed tool focused on early stage decisions on building envelope design and integrating tool usability in the design process. Results indicate that the proposed tool provides basis for decision making that respond to Brazilian standards previously disregarded by participants. Also indicate improved understanding on parameters that affect building envelope thermal performance.
keywords Thermal performance, Numeric modeling tool, Building envelope, Evidence Based Design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2018.1.401
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2018_295
id ecaade2018_295
authors Dezen-Kempter, Eloisa, Cogima, Camila Kimi, Vieira de Paiva, Pedro Victor and Garcia de Carvalho, Marco Antonio
year 2018
title BIM for Heritage Documentation - An ontology-based approach
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 213-222
doi https://doi.org/10.52842/conf.ecaade.2018.1.213
summary In the recent decades, the high-resolution remote sensing, through 3D laser scanning and photogrammetry benefited historic buildings maintenance, conservation, and restoration works. However, the dense surface models (DSM) generated from the data capture have nonstructured features as lack of topology and semantic discretization. The process to create a semantically oriented 3D model from the DSM, using the of Building Information Model technology, is a possibility to integrate historical information about the life cycle of the building to maintain and improving architectural valued building stock to its functional level and safeguarding its outstanding historical value. Our approach relies on an ontology-based system to represent the knowledge related to the building. Our work outlines a model-driven approach based on the hybrid data acquisition, its post-processing, the identification of the building' main features for the parametric modeling, and the development of an ontological map integrated with the BIM model. The methodology proposed was applied to a large-scale industrial historical building, located in Brazil. The DSM were compared, providing a qualitative assessment of the proposed method.
keywords Reality-based Surveying; Ontology-based System; BIM; Built heritage management
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2018_1483
id sigradi2018_1483
authors Dias Maciel, Sérgio; de Amorim, Arivaldo Leão; de Souza Checcucci, Érica; Bomfim Santos, Kyane
year 2018
title The creative process in architectural design on a digital environment: an experience with beginner students
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1010-1016
summary This article presents some results in the architectural design course, which were obtained by under graduate students in two experimental class organized at Federal University of Bahia in 2016 and 2017 years. The class Studio I, with incoming students (2016) and Integrated Digital Studio, with beginners and sophomore students (2017), were planned to have their activities developed in a digital environment, using geometric modeling as the main resource for the architectural design. The results obtained show maturity and autonomy of the students related to architectural designing and the use of digital resources.
keywords Architectural design; Architectural design teaching; Geometric Modeling; CAAD
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_292
id caadria2018_292
authors Eid Mohamed, Basem, ElKaftangui, Mohamed and Zureikat, Rana
year 2018
title {In}Formed Panels - Towards Rethinking the Precast Concrete Industry in the UAE
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 287-296
doi https://doi.org/10.52842/conf.caadria.2018.1.287
summary The convergence of digital design and fabrication technologies have offered architects and designers the means by which to develop customized architectural artifacts, ones that goes beyond the standards of "one size fits all". Such applications have been applied extensively in various architectural practices, and specifically in the realm of industrialized building production, given that they present a suitable model. Although unrecognized within standard precast concrete production, current research acknowledges the need for advanced computer applications for shifting the industry into a digitized process. This paper represent a critical phase of an ongoing research endeavor that aims at rethinking the precast concrete production in the UAE, and MENA region for housing typologies. The project explores possibilities of a new protocol that is focused from design to production, relying on performative design strategies, and possible optimized for large format 3D printing of concrete elements. The aim is to develop an integrated façade panels system that is tailored for design and production; an approach that goes beyond current industry practices.
keywords Precast Concrete; Industrialized Construction; Evolutionary Design; Optimization
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2018_297
id ecaade2018_297
authors Elesawy, Amr, Caranovic, Stefan, Zarb, Justin, Jayathissa, Prageeth and Schlueter, Arno
year 2018
title HIVE Parametric Tool - A simplified energy simulation tool for educating architecture students
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 657-666
doi https://doi.org/10.52842/conf.ecaade.2018.1.657
summary This paper presents HIVE, a new open source design toolbox, which focuses on teaching concepts of Energy and Climate Systems integration in buildings. .The aim is to empower architecture students to integrate aspects of energy efficiency during the architectural design process. The tool employs a simplified input format designed for ease of use and provides almost instantaneous, direct feedback to support students of all experience levels in the early, conceptual building design stages, where numerous iterations need to be conducted efficiently within a short period of time.The project aims to create a robust toolbox that will become an innovative reference in architecture and engineering - lectures, design studios, and project-based learning - through its capacity to quickly, and effectively, translate building energy systems concepts into graphic formats central to building design teaching and practice. The fast feedback that the users receive to their design parameters changes will enable an effective and quick build-up of tacit knowledge about building energy systems, complementary to the explicit, theoretical knowledge that is usually taught in courses, thus creating a more complete learning experience.
keywords Building Simulation; Low-energy architecture; Integrated curriculum; PV Assessment; Simplified GUI; Architecture Education
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaaderis2018_109
id ecaaderis2018_109
authors Fereos, Pavlos and Tsiliakos, Marios
year 2018
title Lucid Foam - Multi-Axis Robotic Hot-Wire Cutting for Translucency
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 123-130
keywords Hotwire cutting of Styrofoam or Polystyrene has been a popular tool for developing fast prototypes by the architectural community. The introduction of multi-axis industrial robots in the architectural curriculum, and the enhancement of the design to fabrication process by software bridging the gap, provided an alternative meaning to the traditional mostly representational process of hotwire cutting.This paper sets out to document and assess the procedural methodology and the results of a series of integrated design to fabrication experiments that took place in the Institut für Experimentelle Architektur-Hochbau. By channelling design intention towards a component assembly for a translucent effect, students were asked to utilise industrial robots to fabricate and prototype via hotwire cutting, designs that refer to architectural elements. These elements, mainly due to their scale and the commercial availability of bulk Styrofoam panels, can lead to functional or ornamental representations of discrete elements, which can be assembled together as part of a greater design.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_301
id caadria2018_301
authors Fereos, Pavlos, Tsiliakos, Marios and Jaschke, Clara
year 2018
title Spaceship Architecture - A Sci-Fi Pedagogical Approach to Design Computation
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2018.1.081
summary The analysis of make-belief drawings and models of Sci-Fi spaceships and architecture, leaves architects usually in absence of interior, material or program information. The spatial depth of sci-fi digital or physical models is virtually non-existent and unresolved. This discrepancy within sci-fi scenarios inspired the development of an integrated teaching methodology within design studios, with the academic objective to utilize computational methods for analysis, reproduction and eventually composition, while assessing its capacity to achieve a successful assimilation of design computation in the curriculum. The Spaceship Architecture Design Studio at University of Innsbruck's Institute for Experimental Architecture.hochbau follows a procedural approach in which the design objective is not predefined. Yet, it aims to be 'outside of this world' as a sci-fi architectural quality-enriched result of our reality, via a design oriented course with immersive computational strategies.
keywords pedagogy; computation; sci-fi; academia; teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_339
id ecaade2018_339
authors Fereos, Pavlos, Tsiliakos, Marios and Jaschke, Clara
year 2018
title Spaceship Tectonics - Design Computation Pedagogy for Generative Sci-Fi Building Skins
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 357-366
doi https://doi.org/10.52842/conf.ecaade.2018.2.357
summary Sci-Fi architecture, both as digital or physical representations, despite their inherent intricacy, lack the spatial depth of a structured interior, material definition or program information. This discrepancy, combined with the plethora of available sci-fi motifs, inspired the development of an integrated teaching approach with the academic objective to utilize computational methods for analysis, reproduction and composition of generative building skins, and consequently architecture, which aims to be 'outside of this world' as a sci-fi design quality-enriched result of our reality. The proposed methodology is implemented at the Spaceship Architecture Design Studio at the University of Innsbruck. Its capacity to achieve a successful assimilation of design computation in the curriculum is subsequently assessed by the documentation and quantitative/qualitative evaluation of the designs developed during two academic years, in line with a generative facade articulation schema, without however undermining the rest of the virtues of tectonic spaces. The introduction of a theme like sci-fi where the design objective is not clearly defined, is examined in comparison to similar approaches, towards the corroboration of the pedagogical method proposed.
keywords Pedagogy; Computation; Facade Design; Generative; Sci-Fi; Patterns
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_398
id ecaadesigradi2019_398
authors Fink, Theresa and Koenig, Reinhard
year 2019
title Integrated Parametric Urban Design in Grasshopper / Rhinoceros 3D - Demonstrated on a Master Plan in Vienna
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 313-322
doi https://doi.org/10.52842/conf.ecaade.2019.3.313
summary By 2050 an estimated 70 percent of the world's population will live in megacities with more than 10 million citizens (Renner 2018). This growth calls for new target-oriented, interdisciplinary methods in urban planning and design in cities to meet sustainable development targets. In response, this paper exemplifies an integrated urban design process on a master plan project in Vienna. The objective is to investigate the potential towards a holistic, digital, urban design process aimed at the development of a practical methodology for future designs. The presented urban design process includes analyses and simulation tools within Rhinoceros 3D and its plug-in Grasshopper as quality-enhancing mediums that facilitate the creative approaches in the course of the project. The increase in efficiency and variety of design variants shows a promising future for the practical suitability of this approach.
keywords urban design; parametric modeling; urban simulation; design evaluation; environmental performance
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_98
id acadia18_98
authors Fox, Michael; Schulitz, Marc; Gershfeld, Mikhail; Cohen, Marc
year 2018
title Full Integration: Closing the Gap on Technology Readiness
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 98-107
doi https://doi.org/10.52842/conf.acadia.2018.098
summary This paper discusses the authors’ experiences and lessons learned through designing and constructing small- and large-scale robotic prototypes and the fully integrated use of VR and AR for design. Also of focus here are the methodological tools utilized to implement this student-led research in an interdisciplinary educational environment, as well as the design explorations of Mars habitation systems. Through the systems engineering approach, students will generate ideas that may or may not make it to the final design development stage, but may potentially be valuable to future real exploration habitats and mission architectures. The final prototype allows an assessment of the focus parameters, which are the vessels’ transformation capacities and layout adaption. The design objective of this project is to examine strategies for commonality between an interplanetary vehicle (IPV) and a Mars surface habitat. The presented design proposals address this challenge to create a common habitation system in both habitats so that crew members will be familiar with the layout, function, and location throughout the expedition. The design tools operate at the intersection of architectural layout design, mechanics, and structural design, and use origami folding techniques and structural form-finding concepts to generate shell action rigidity. In addition, the project develops a strategy for mobility and transformation of the surface habitat prior to its transformed configuration. The value here lies in understanding lessons from this strategy for both the design process as well as efficiency and optimization in design as a model for terrestrial design.
keywords full paper, bim, flexible structures, performance + simulation, representation + perception, building technologies, vr/ar/mr
series ACADIA
type paper
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_524284 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002