CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 618

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_247
id ecaade2018_247
authors Ilunga, Guilherme and Leit?o, António
year 2018
title Derivative-free Methods for Structural Optimization
doi https://doi.org/10.52842/conf.ecaade.2018.1.179
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 179-186
summary The focus on efficiency has grown over recent years, and nowadays it is critical that buildings have a good performance regarding different criteria. This need prompts the usage of algorithmic approaches, analysis tools, and optimization algorithms, to find the best performing variation of a design. There are many optimization algorithms and not all of them are adequate for a specific problem. However, Genetic Algorithms are frequently the first and only option, despite being considered last resort algorithms in the mathematical field. This paper discusses methods for structural optimization and applies them on a structural problem. Our tests show that Genetic Algorithms perform poorly, while other algorithms achieve better results. However, they also show that no algorithm is consistently better than the others, which suggests that for structural optimization, several algorithms should be used, instead of simply using Genetic Algorithms.
keywords Derivative-free Optimization; Black-box Optimization; Structural Optimization; Algorithmic Design
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2018_1806
id sigradi2018_1806
authors Barbosa Cabral, Sthefane Adrielly; Alejandro Nome, Carlos; Queiroz, Natália
year 2018
title Pilot study of numerical modeling tool to evaluate the thermal performance of walls according to Brazilian standards
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 286-293
summary The paper discusses a numerical modeling tool to evaluate thermal performance of building envelope according to Brazilian NBR15.220 and NBR 15.575 standards. Contemporary integrated design processes require the development of early design stage decision support mechanisms in order to optimize building performance. The development of the proposed tool focused on early stage decisions on building envelope design and integrating tool usability in the design process. Results indicate that the proposed tool provides basis for decision making that respond to Brazilian standards previously disregarded by participants. Also indicate improved understanding on parameters that affect building envelope thermal performance.
keywords Thermal performance, Numeric modeling tool, Building envelope, Evidence Based Design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaade2018_125
id ecaade2018_125
authors Khoo, Chin Koi and Shin, Jae-Won
year 2018
title Designing with Biomaterials for Responsive Architecture - A soft responsive "bio-structural" hydrogel skin
doi https://doi.org/10.52842/conf.ecaade.2018.2.285
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 285-292
summary Synthetic biomaterials are not only widely explored in tissue engineering, but also present important opportunities in responsive architecture, especially soft structures and skins. In this paper we present how water-containing hydrogels can be adapted to digital fabrication techniques to design a soft responsive skin with integrated skeleton and surface. This research project details preliminary investigation into how tough hydrogels with different material properties can be designed and incorporated into laser-cutting and 3D printing methods typically used in architectural design. The outcome of this research produces an early prototype of thermally sensitive, tough hydrogel skin that responds to environmental stimuli such as temperature and moisture. Our work provides initial insights into how a soft responsive "bio-structural" architectural skin can be designed by integrating actuation, structure, and skins.
keywords Biomaterials; digital fabriication; hydrogel; responsive architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_317
id ecaade2018_317
authors Kontovourkis, Odysseas and Doumanidis, Constantine C
year 2018
title ICARUS Project - An Open Source Platform for Computer Programming in Architectural Teaching and Research
doi https://doi.org/10.52842/conf.ecaade.2018.1.341
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 341-350
summary This paper, presents an ongoing work entitled ICARUS, an abbreviation for 'Integrating Computerized ARchitecture with USers'. The aim of this work is to develop an open source platform for computer programming implemented in architecture, for teaching and research. In particular, the platform provides the framework for a simplified and user friendly textual programming methodology for the needs of our architectural institution. It consists of several modules like coding, plug-in and repository development, targeting to be publicly available in the future. The platform is created based on the Python programming language, which is run in Grasshopper, a plug-in for Rhino 3D. In the first phase of ICARUS development, several case studies within the framework of a postgraduate course are conducted, aiming at providing an overview of its potentials, limitations and generally, its impact on establishing a useful methodology for algorithmic thinking among students with little or no prior computer programming skills.
keywords Computer programming; Open source platform; Parametric design; Plug-in development; Algorithmic thinking
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201816103
id ijac201816103
authors Alani, Mostafa W.
year 2018
title Algorithmic investigation of the actual and virtual design space of historic hexagonal-based Islamic patterns
source International Journal of Architectural Computing vol. 16 - no. 1, 34-57
summary This research challenges the long-standing paradigm that considers compositional analysis to be the key to researching historical Islamic geometric patterns. Adopting a mathematical description shows that the historical focus on existing forms has left the relevant structural similarities between historical Islamic geometric patterns understudied. The research focused on the hexagonal-based Islamic geometric patterns and found that historical designs correlate to each other beyond just the formal dimension and that deep, morphological connections exist in the structures of historical singularities. Using historical evidence, this article identifies these connections and presents a categorization system that groups designs together based on their “morphogenetic” characteristics.
keywords Islamic geometric patterns, morphology, computations, digital design, algorithmic thinking
series journal
email
last changed 2019/08/07 14:03

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
doi https://doi.org/10.52842/conf.caadria.2018.1.205
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia18_98
id acadia18_98
authors Fox, Michael; Schulitz, Marc; Gershfeld, Mikhail; Cohen, Marc
year 2018
title Full Integration: Closing the Gap on Technology Readiness
doi https://doi.org/10.52842/conf.acadia.2018.098
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 98-107
summary This paper discusses the authors’ experiences and lessons learned through designing and constructing small- and large-scale robotic prototypes and the fully integrated use of VR and AR for design. Also of focus here are the methodological tools utilized to implement this student-led research in an interdisciplinary educational environment, as well as the design explorations of Mars habitation systems. Through the systems engineering approach, students will generate ideas that may or may not make it to the final design development stage, but may potentially be valuable to future real exploration habitats and mission architectures. The final prototype allows an assessment of the focus parameters, which are the vessels’ transformation capacities and layout adaption. The design objective of this project is to examine strategies for commonality between an interplanetary vehicle (IPV) and a Mars surface habitat. The presented design proposals address this challenge to create a common habitation system in both habitats so that crew members will be familiar with the layout, function, and location throughout the expedition. The design tools operate at the intersection of architectural layout design, mechanics, and structural design, and use origami folding techniques and structural form-finding concepts to generate shell action rigidity. In addition, the project develops a strategy for mobility and transformation of the surface habitat prior to its transformed configuration. The value here lies in understanding lessons from this strategy for both the design process as well as efficiency and optimization in design as a model for terrestrial design.
keywords full paper, bim, flexible structures, performance + simulation, representation + perception, building technologies, vr/ar/mr
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id ecaade2018_312
id ecaade2018_312
authors Gündüz, Gamze, Oral, Hülya and Yazar, Tu?rul
year 2018
title Integration of Design Geometry with "Computational Making" in Basic Design Studio - A Case Study of Lanterns Project
doi https://doi.org/10.52842/conf.ecaade.2018.2.439
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 439-448
summary Basic design education, as an introduction of design principles to novice students, has two-way of teaching which are design thinking and professional training, since Bauhaus. Initiated in 2009, the Computation-based Basic Design Studio creates a common ground through discussions between students, academics, and professionals from various backgrounds. In this paper, the implementation of parallel courses named Computation-based Basic Design Studio and Design Geometry is discussed upon final assignment of the first semester- New Year's Lanterns. The given assignment structured as a cyclic process through constant feedback between geometric relations, material performance, and, joinery details to achieve novel outcomes that exceed the preliminarily set structural criteria. In relation to individual processes and outcomes of the final assignment, observed tendencies developed by students', at the end of their first-term in design education, will be discussed as final remarks.
keywords design education; basic design; design geometry; polyhedra
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2018_270
id caadria2018_270
authors Houda, Maryam and Reinhardt, Dagmar
year 2018
title Structural Optimisation for 3D Printing Bespoke Geometries
doi https://doi.org/10.52842/conf.caadria.2018.1.235
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 235-244
summary Current advances in 3D printing technology enable novel design explorations with the potential to inform printing deposition through generative scripting and structural performance analysis. This paper presents ongoing research that involves three scales of operation; a global geometry for multi-skin cellular mesh densities; localised skin-porosity detailing, and material structural optimisation. Centering on a chair as a test case scenario, the research explores the affordances of a serialised, multi-material 3D printing process in the context of digital instruction, customisation, and material efficiency. The paper discusses two case studies with consecutive optimisation, and outlines the benefits and limitations of 3D printing for structural optimisation and multi-material grading in the additive process.
keywords 3D Printing; Bespoke Complexity; Digital Instruction; Mass Customisation; Multi-Material Grading; Robotic Deposition; Structural Optimisation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_310
id ecaade2018_310
authors Jabi, Wassim, Aish, Robert, Lannon, Simon, Chatzivasileiadi, Aikaterini and Wardhana, Nicholas Mario
year 2018
title Topologic - A toolkit for spatial and topological modelling
doi https://doi.org/10.52842/conf.ecaade.2018.2.449
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 449-458
summary This paper describes non-manifold topology (NMT) as it relates to the field of architecture and presents Topologic, an open-source software modelling library enabling hierarchical and topological representations of architectural spaces, buildings and artefacts through NMT. Topologic is designed as a core library and additional plugins to visual data flow programming (VDFP) software. The software architecture and class hierarchy are explained and two domain-specific demonstrative tools (TopologicEnergy and TopologicStructure) are presented to illustrate how third-party software developers could use Topologic to build their own solutions. The paper concludes with a reflection on the benefits and limitations of NMT in the design and simulation workflows and outlines future work.
keywords Non-manifold topology; Visual data flow programming; Building performance simulation; Structural analysis; Computational design; Building information modelling
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2018_068
id caadria2018_068
authors Khabazi, Zubin
year 2018
title Mathematical Design and Challenges in the Materialisation of a Free-From Shell
doi https://doi.org/10.52842/conf.caadria.2018.1.019
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 19-28
summary Mathematical design of free-form shells and their materialisation is the main challenge of this paper that we tried to address through the realisation of two successive pavilion projects. We discuss how combination of explicit use of mathematical design of a minimal surfaces could be combined with the geometrical flexibility of glass-fibre composites to result in a shell with efficient structural performance and material use. This has been tested here first using fibre-composite panels and then sandwich-structured composite panels. We compared the result of both approaches based on their structural and geometrical capacities.
keywords Mathematical Design; Material Distribution Optimisation; Robotic Hot-Wire Cutting; Free-Form Shell; Customised Sandwich-Structured Composites
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_164p
id acadia20_164p
authors Lange, Christian; Ratoi, Lidia; Co Lim, Dominic; Hu, Jason; Baker, David M.; Yu, Vriko; Thompson, Phil
year 2020
title Reformative Coral Habitats
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 164-169
summary Coral reefs are some of the most diverse ecologies in the marine world. They are the habitat to tens of thousands of different marine species. However, these wildlife environments are endangered across the globe. Recent research estimates that around 75 percent of the remaining coral reefs are currently under threat. In 2018 after a devastating storm, Hong Kong lost around 80% of its existing corals. Consequently, a team consisting of marine biologists and architects at The University of Hong Kong has developed a series of performative structures that have been deployed in the city's waters in July 2020, intending to aid new coral growth over the coming years. The project was commissioned by the Agriculture, Fisheries, and Conservation Department (AFCD) and is part of an ongoing active management measure for coral restoration in Hoi Ha Wan Marine Park in Hong Kong. The following objectives were defined as part of the design and fabrication research of the project. To develop a design strategy that builds on the concept of biomimicry to allow for complex spaces to occur that would provide attributes against the detachment of the inserted coral fragment, hence could enhance a diverse marine life specific to the context of the cities water conditions. To generate an efficient printing path that accommodates the specific morphological design criteria and ensures structural integrity and the functional aspects of the design. To develop an efficient fabrication process with a DIW 3D printing methodology that considers warping, shrinkage, and cracking in the clay material. The research team developed a method that combined an algorithmic design approach for the design of different geometries with a digital additive manufacturing process utilizing robotic 3D clay printing. The overall fabrication strategy for the complex and large pieces sought to ensure structural longevity, optimize production time, and tackle the involved double-sided printing method. Overall, 128 tiles were printed, covering roughly 40sqm of the seabed.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia18_358
id acadia18_358
authors Lara Ditzel, Patricio; Balas, Leonard; Kalina, Olga; Vasey, Lauren; Bechert, Simon; Krieg ,Oliver David; Menges, Achim; Knippers, Jan
year 2018
title Integrative Fabrication of Sandwich Shells. An integrative approach to design of robotically fabricated wood- based sandwich segmented shells
doi https://doi.org/10.52842/conf.acadia.2018.358
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 358-365
summary This paper presents the development of an integrative and adaptive robotic fabrication process for the production of wooden-based segmented shells of variable thickness. A material and construction process is presented whereby an industrial robot with a two-degree of freedom end-effector acts as active form-work, positioning flexible strips of plywood so they can be assembled into a structurally performative configuration and then filled with a polyurethane expandable foam. The resulting material system is a structurally performative and doubly curved sandwich composite which performs well in bending. This paper discusses the construction process and the material system, methods for structural analysis, an adaptive robotic fabrication process, as well as a computational design tool which integrates material constraints, robotic constraints, and structural performance. The resulting construction system expands the design possibilities for robotic fabrication in wood, particularly as a viable material system for implementation directly in an on-site condition.
keywords work in progress, fabrication & robotics, materials & adaptive systems
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_414
id ecaade2018_414
authors Liapi, Katherine and Papantoniou, Andreana
year 2018
title Square Tessellation Patterns on Double Layer Minimal Surface Structures - Geometric Investigation and Design Algorithms
doi https://doi.org/10.52842/conf.ecaade.2018.2.385
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 385-390
summary Minimal surfaces, defined as surfaces of the smallest area spanned by a given boundary present advantages for architectural applications in terms of their structural and material performance. Therefore, the investigation of their properties including their geometric ones deserve special attention. In this regard, methods for tessellating minimal surfaces need to be studied. In this paper, patterns that consist of four squares with partly overlapping sides have been considered. A constrain in this study was the square tiles maintained their planarity. Three different types of surfaces have been considered, namely the helicoid, catenoid and Enneper's surface. Design algorithms that generate tiling patterns in all three minimal surface types have been developed and are presented in the paper. The geometric investigation of the application of the developed methods to double layer structures has also been examined and discussed in the paper. Finally, the accuracy of the developed algorithms has been tested through the construction of a physical model.
keywords minimal surfaces; double layer; square tessellation
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
doi https://doi.org/10.52842/conf.acadia.2018.434
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_162480 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002