CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 620

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
doi https://doi.org/10.52842/conf.acadia.2018.226
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id sigradi2023_375
id sigradi2023_375
authors Consalter Diniz, Maria Luisa, Polverini Boeing, Lais, dos Santos Carvalho, Wendel and Bertola Duarte, Rovenir
year 2023
title Natural Language Processing, Sentiment Analysis, and Urban Studies: A Systematic Review
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1761–1772
summary This paper discusses the potential of using data from social media and location data platforms to create cartographies that enhance our understanding of urban dynamics. Natural Language Processing (NLP) and sentiment analysis are highlighted as essential tools for comprehending and categorizing this data. The study conducted a systematic review of NLP and sentiment analysis applications in urban studies, covering 27 peer-reviewed journals and conference papers published between 2018 and 2023. The research classified applications into six categories: urban livability, governance and management, user and landscape perception, land use and zoning, public health, and transportation and mobility. Most studies primarily relied on data from social media platforms like Twitter and location data sources such as Google Maps and Trip Advisor. Challenges include dealing with irrelevant or misleading information in publicly available data and limited accuracy when analyzing sentiments of non-English-speaking populations.
keywords Natural language processing, Sentiment analysis, Urban studies, Digital cartographies, Systematic review.
series SIGraDi
email
last changed 2024/03/08 14:09

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia18_328
id acadia18_328
authors Kladeftira, Marirena; Shammas, Demetris; Bernhard, Mathias; Dillenburger, Benjamin
year 2018
title Printing Whisper Dishes. Large-scale binder jetting for outdoor installations
doi https://doi.org/10.52842/conf.acadia.2018.328
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 328-335
summary This research explores the design opportunities of a novel fabrication process for large scale architectural installations suitable for outdoor weather conditions. High resolution, bespoke geometries are easily fabricated at no extra cost in a continuous system using Binder Jet printing technology. The material properties of sandstone are considered a design drive for producing structural paths according to a finite element analysis. Several post processing materials are tested for strengthening the final geometry and providing a water resistant solution. The process is tested in a large, 1:1 sound installation of a pair of acoustic mirrors. First, this paper describes the specific potential and challenges of Binder Jet printing for outdoor applications. It, then, outlines the design principles of the sound device, the acoustic mirror, and their integration into a digital model. Finally, the computational design strategy is described, including topology optimization to reduce the weight/material and the integration of functional details
keywords work in progress, 3d printing, form finding, digital fabrication, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_139
id ecaade2018_139
authors Cudzik, Jan and Radziszewski, Kacper
year 2018
title Artificial Intelligence Aided Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.077
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 77-84
summary Tools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools that suit their specific needs. In some cases, they use artificial intelligence. Despite many similarities, they have different advantages and disadvantages. Therefore the change in the design process is more visible and unseen before solution are brought in the discipline. The article presents methods of applying the selected artificial intelligence algorithms: swarm intelligence, neural networks and evolutionary algorithms in the architectural practice by authors. Additionally research shows the methods of analogue data input and output approaches, based on vision and robotics, which in future combined with intelligence based algorithms, might simplify architects everyday practice. Presented techniques allow new spatial solutions to emerge with relatively simple intelligent based algorithms, from which many could be only accomplished with dedicated software. Popularization of the following methods among architects, will result in more intuitive, general use design tools.
keywords computer aideed design; artificial intelligence,; evolutionary algorithms; swarm behaviour; optimization; parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac201816401
id ijac201816401
authors Doyle, Shelby and Nick Senske
year 2018
title Digital provenance and material metadata: Attribution and co-authorship in the age of artificial intelligence
source International Journal of Architectural Computing vol. 16 - no. 4, 271-280
summary This speculative essay examines a single drawing, produced in a collaboration between the authors and a Turtle robot, in a search for methods to evaluate and document provenance in artificial intelligence and robotic design. Reflecting upon the layers of authorship in our case study reveals the complex relationship that already exists between human and machine collaborators. In response to this unseen provenance, we propose new modes to document the full range of creative contribution to the design and production of artifacts from intellectual inputs to digital representations to physical labor. A more comprehensive system for artificial intelligence/robotic attribution could produce counter- narratives to technological development which more fully acknowledge the contributions of both humans and machines. As artificially intelligent design technologies distinguish themselves with distinct capabilities and eventual autonomy, a system of embedded attribution becomes the basis for human–machine collaboration, indeterminacy, and unexpected new applications for existing tools and methods.
keywords Artificial intelligence, robotics, metadata, attribution, co-authorship, ethics
series journal
email
last changed 2019/08/07 14:04

_id acadia18_88
id acadia18_88
authors Jahn, Gwyllim; Newnham, Cameron; Beanland, Matthew
year 2018
title Making in Mixed Reality. Holographic design, fabrication, assembly and analysis of woven steel structures
doi https://doi.org/10.52842/conf.acadia.2018.088
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 88-97
summary The construction industry’s reliance on two-dimensional documentation results in inefficiency, inconsistency, waste, human error, and increased cost, and limits architectural experimentation with novel form, structure, material or fabrication approaches. We describe a software platform that enables designers to create interactive holographic instructions that translate design models into intelligent processes rather than static drawings. A prototypical project to design and construct a pavilion from bent mild steel tube illustrates the use of this software to develop applications assisting with the design, fabrication, assembly and analysis of the structure. We further demonstrate that fabrication within mixed reality environments can enable unskilled construction teams to assemble complex structures in short time frames and with minimal errors, and outline possibilities for further improvements.
keywords full paper, vr/ar/mr, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id lasg_whitepapers_2019_133
id lasg_whitepapers_2019_133
authors Ji, Haru Hyunkyung; and Graham Wakefield
year 2019
title Selected Artificial Natures, 2017-2018
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.133 - 142
summary Artificial Nature is a research-creation collaboration co-founded by Haru Hyunkyung Ji and Graham Wakefield in 2007. It has led to a decade of immersive installations in which the invitation is to become part of an alien ecosystem rich in feedback networks.1 Here we present four recent works in this series between 2017 and 2018.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2019_329
id caadria2019_329
authors Zhao, Yao, Zhu, Weiran and Yuan, Philip F.
year 2019
title From Acoustic Data Perception to Visualization Design
doi https://doi.org/10.52842/conf.caadria.2019.1.393
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 393-402
summary This research project is based on the research results from the "Acoustic Visualization Group" of Digital FUTURES Summer Workshop in Shanghai, 2018. In this workshop, students use sound data acquisition sound collection equipment to collect sound information in the space and transform it into digital data. After analyzing the data, they present it as a visible form and design the sound interaction device based on the results. This study combines the media art and digital technology to transform the invisible acoustics digital information into a tangibly visible experiencing space and to mix the virtual acoustics space, realistic light- and- shadow space and the three-dimension material space in multi-dimensions through the digital programming and generative art design. Acoustic visualization interaction design is a comprehensive attempt which mixed with several research fields such as architecture device design, digital media technology, human-computer interaction and architecture environment science.
keywords Acoustic Visualization; Digital FUTURES; Interaction Device
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2019_664
id caadria2019_664
authors Zhou, Yifan, Zhang, Liming, Wang, Xiang, Chen, Zhewen and Yuan, Philip F.
year 2019
title Exploration of Computational Design and Robotic Fabrication with Wire-Arc Additive Manufacturing Techniques
doi https://doi.org/10.52842/conf.caadria.2019.1.143
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 143-152
summary This paper discussed the exploration of computational design and robotic fabrication with Wire-Arc Additive Manufacturing techniques in a robotic metal printing workshop in Digital Futures 2018. Based on the previous research on structural-performance based design and robotic fabrication, this year's workshop mainly focused on the Wire-Arc Additive Manufacturing techniques and its possible outcomes. A prototype chair was tested for preparation. And the final target of the workshop was to build a bridge about 11m across the river. Through this metal printed bridge project, several computational optimization methods were applied to fulfill the final design. And Wire-Arc Additive Manufacturing techniques with robotic fabrication were carried out during the fabrication process.
keywords computational design; robotic fabrication; wire-arc additive manufacturing techniques
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2018_1300
id sigradi2018_1300
authors Alves de Almeida, Marcela; de Souza Nogueira, Yasmim
year 2018
title Parametricism as style: the relationship between methodology of scientific research programmes and parametric design
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 17-22
summary During the 1990s many architects, who dissociated from critical theory, were looking for new design methodologies that did not confine themselves as stylistic currents. One of these propractice movement is done by means of parametric design. Aiming to investigate the boundaries between methodology and style, this paper proposes to answer the question: does the parametric architecture constitute a new style, as Patrik Schumacher says? It reviews Heinrich Wölfflin concept of style in the contemporary context; it presents Imre Lakatos theory (methodology of scientific research programmes) and how Schumacher appropriates of it followed by a critical reflection on the limits of such appropriation.
keywords Parametric design; Style
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1359
id sigradi2018_1359
authors Bertola Duarte, Rovenir; Ziger Dalgallo, Ayla; Consalter Diniz, Maria Luisa; Romão Magoga, Thais
year 2018
title A window to the autism: the political role of the difference of an objectile in the homogeneous school
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 848-853
summary This paper approaches the insertion of an objectile in the homogeneous space of a school, looking to bring flexibility and responsiveness to assist a user with Autism Spectrum Disorder (ASD). The research concerns with photosensitivity, a problem faced by almost 25% of the children with autism (Miller-Horn; Spence; Takeoka, 2011). The study is based on the theories for ASD environments that speak of ‘sensorial perception’ and ‘thinking with imagery’ (Mostafa, 2008), and the coexistence of Sensory Design Theory and Neuro-Typical Method (Pomana, 2015). The result consists of a gadget developed in MIT App Inventor tool and a curtain that interact responsively through an Arduino code, for a new connection between the user and his surroundings.
keywords Objectile; Responsive Architecture; Architecture and autism; ASD; Inclusive school
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_438
id ecaade2018_438
authors Das, Subhajit
year 2018
title Interactive Artificial Life Based Systems, Augmenting Design Generation and Evaluation by Embedding Expert Opinion - A Human Machine dialogue for form finding.
doi https://doi.org/10.52842/conf.ecaade.2018.1.085
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
summary Evolution of natural life and subsequently selection of life forms is an interesting topic that has been explored multiple times. This area of research and its application has high relevance in evolutionary design and automated design generation. Taking inspiration from Charles Darwin's theory, all biological species were formed by the process of evolution based on natural selection of the fittest (Darwin, n.d.) this paper explains exploratory research showcasing semi-automatic design generation. This is realized by an interactive artificial selection tool, where the designer or the end user makes key decisions steering the propagation and breeding of future design artifacts. This paper, describes two prototypes and their use cases, highlighting interaction based optimal design selection. One of the prototypes explains a 2d organic shape creator using a metaball shape approach, while the other discusses a spatial layout generation technique for conceptual design.
keywords design generation; implicit surfaces; artificial life; decision making; artificial selection; spatial layout generation
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_332
id ecaade2018_332
authors de Azambuja Varela, Pedro and Sousa, José Pedro
year 2018
title Reinforced, Reusable, Reconfigurable Molds for Cast Voussoirs
doi https://doi.org/10.52842/conf.ecaade.2018.1.771
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 771-780
summary This paper describes the theory and practical experiments on the development of a system for the deployment of stereotomic voussoirs. The recent availability of digital design and fabrication tools has enabled architects to embrace stereotomic thinking, allowing for the efficient spanning of spaces with low tensile capable materials such as stone. The proposed fabrication system is an evolution of an on-going research which creates a direct link between the geometrical and material needs of a stereotomic structure with materialization tools that enable the swift creation of multiple customized blocks.
keywords stereotomy; voussoir; mould; robotic; mass customization; plaster
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
doi https://doi.org/10.52842/conf.acadia.2018.336
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2018_306
id caadria2018_306
authors Liu, Jie, Ma, Hongtao, Tang, Ning, Xu, Weiguo and Luo, Dan
year 2018
title Kinetair: Interactive Stairs with Multiple Functions
doi https://doi.org/10.52842/conf.caadria.2018.2.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-378
summary Kinetair is an interactive stairs prototype which could change its appearance according to the surrounding conditions, providing a diversity of functions, such as stairs, exhibition walls, furniture and so on. This research is based on the Interactive Architecture theory, integrating with digital fabrication technology. This paper will illustrate the origin of the concept, the concept development process, the fabrication process and the various possible application of Kinetair. This experiment evokes us to rethink the fundamental meanings of the architecture components in a brand new perspective, and stimulates designers to explore the new features of conventional constructions with cutting-edge technologies.
keywords interactive stairs; stair design; kinetic structure; dynamic design; adaptive form
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia18_46
id acadia18_46
authors Marcus, Adam; Kudless, Andrew
year 2018
title Drawing Codes. Experimental protocols of architectural representation
doi https://doi.org/10.52842/conf.acadia.2018.046
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 46-55
summary Emerging technologies of design and production have largely changed the role of drawings within the contemporary design process from that of design generators to design products. As architectural design has shifted from an analog drawing-based paradigm to that of a computational model-based paradigm, the agency of the drawing as a critical and important form of design representation has greatly diminished. As our design tools have increasingly become computational and the production of our drawings have become predominantly automated, this paper examines the effects on the architectural discipline and attempts to catalog examples of how artists, designers, architects, and programmers have used rule-based techniques in the process of drawing as a critical act in their process. Furthermore, the paper presents the Drawing Codes project, an ongoing research and exhibition platform that critically investigates the intersection of code and drawing: how rules and constraints inform the ways architects document, analyze, represent, and design the built environment. The project features commissioned drawings by a range of contemporary architects and designers as a means of gathering a diverse set of perspectives on how computational techniques, but more importantly, computational thinking, can reexamine the role of architectural drawing as a creative and critical act.
keywords full paper, design theory & history, representation + perception, procedural design, art and technology
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id sigradi2018_1681
id sigradi2018_1681
authors Paglis, Julia; Brandão, Guilherme; Lima, Fernando; Serdoura, Francisco
year 2018
title Urban Analysis and Space Syntax Theory: study and mapping of the city of Juiz de Fora, Brazil
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 602-608
summary This paper is a result of a research that uses the Space Syntax Theory for analysis of the city of Juiz de Fora, Brazil. After elaborating the axial map, based on data collection available by the City Hall, some analysis of the city were made using the syntactic measures: Integration HH, Mean Depth and Total Depth. The focus of the analysis was on the central area of the city, called "Central Triangle". As a result, the analyzes make it possible to identify that the initial urban center remains as the point of convergence of several urban areas of the city, consolidating itself as an area with great potential.
keywords Space Syntax; Urban analysis; Central area; Juiz de Fora
series SIGRADI
email
last changed 2021/03/28 19:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_545711 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002