CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ijac201816102
id ijac201816102
authors Harmon, Brendan A.; Anna Petrasova, Vaclav Petras, Helena Mitasova and Ross Meentemeyer
year 2018
title Tangible topographic modeling for landscape architects
source International Journal of Architectural Computing vol. 16 - no. 1, 4-21
summary We present Tangible Landscape—a technology for rapidly and intuitively designing landscapes informed by geospatial modeling, analysis, and simulation. It is a tangible interface powered by a geographic information system that gives three- dimensional spatial data an interactive, physical form so that users can naturally sense and shape it. Tangible Landscape couples a physical and a digital model of a landscape through a real-time cycle of physical manipulation, three-dimensional scanning, spatial computation, and projected feedback. Natural three-dimensional sketching and real-time analytical feedback should aid landscape architects in the design of high performance landscapes that account for physical and ecological processes. We conducted a series of studies to assess the effectiveness of tangible modeling for landscape architects. Landscape architecture students, academics, and professionals were given a series of fundamental landscape design tasks—topographic modeling, cut-and-fill analysis, and water flow modeling. We assessed their performance using qualitative and quantitative methods including interviews, raster statistics, morphometric analyses, and geospatial simulation. With tangible modeling, participants built more accurate models that better represented morphological features than they did with either digital or analog hand modeling. When tangibly modeling, they worked in a rapid, iterative process informed by real-time geospatial analytics and simulations. With the aid of real-time simulations, they were able to quickly understand and then manipulate how complex topography controls the flow of water.
keywords Human–computer interaction, tangible interfaces, tangible interaction, landscape architecture, performance, geospatial modeling, topographic modeling, hydrological modeling
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_373
id ecaade2018_373
authors Lee, Sang and Holzheu, Stefanie
year 2018
title Theatrical Performance as Experimental Architecture
doi https://doi.org/10.52842/conf.ecaade.2018.1.589
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 589-594
summary This paper discusses by way of the authors' recent projects how improvised live dance performance, architectonic composition, and sensing technology converge and inform new opportunities in architectural experimentation. We first lay out the theoretical basis of technology in architectural experimentation in "new rationalities" of technologically augmented aesthetic work. We then briefly describe two projects, X-Change Room and RaumSubsTANZ and the motives behind them. X-Change Room deals with /non-verbal/ ambient display of information and interaction through envelope threshold. RaumSubsTANZ, a short interactive dance composition that highlights the ephemerality of architectural composition augmented by interaction devices. Through the two small projects we attempt to explore a specific technological milieu and reflect on the potentials and challenges of experimentation in architectural composition. The paper presents design methods and techniques that incorporate theories of perception and semiotics by way of an umbrella concept, "ambient displays" and interactive composition. Ultimately, we explore non-verbal communication and theatrical performance as architectural informant that augments semiosis and cognition that pertains to the role of technology at the intersection of primordial senses, cerebral technology, and place-making.
keywords Ambient; Bauhaus; Cybernetics; Sensors; Society; Theater
series eCAADe
email
last changed 2022/06/07 07:52

_id lasg_whitepapers_2019_063
id lasg_whitepapers_2019_063
authors Börner, Katy; and Andreas Bueckle
year 2019
title Envisioning Intelligent Interactive Systems; Data Visualizations for Sentient Architecture
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.063 - 088
summary This paper presents data visualizations of an intelligent environment that were designed to serve the needs of two stakeholder groups: visitors wanting to understand how that environment operates, and developers interested in optimizing it. The visualizations presented here were designed for [Amatria], a sentient sculpture built by the Living Architecture Systems Group (LASG) at Indiana University Bloomington, IN, USA, in the spring of 2018. They are the result of an extended collaboration between LASG and the Cyberinfrastructure for Network Science Center (CNS) at Indiana University. We introduce [Amatria], review related work on the visualization of smart environments and sentient architectures, and explain how the Data Visualization Literacy Framework (DVL-FW) can be used to develop visualizations of intelligent interactive systems (IIS) for these two stakeholder groups.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
doi https://doi.org/10.52842/conf.acadia.2018.226
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ijac201816201
id ijac201816201
authors Harding, John and Cecilie Brandt-Olsen
year 2018
title Biomorpher: Interactive evolution for parametric design
source International Journal of Architectural Computing vol. 16 - no. 2, 144-163
summary Combining graph-based parametric design with metaheuristic solvers has to date focused solely on performance-based criteria and solving clearly defined objectives. In this article, we outline a new method for combining a parametric modelling environment with an interactive Cluster-Orientated Genetic Algorithm. In addition to performance criteria, evolutionary design exploration can be guided through choice alone, with user motivation that cannot be easily defined. As well as numeric parameters forming a genotype, the evolution of whole parametric definitions is discussed through the use of genetic programming. Visualisation techniques that enable mixing small populations for interactive evolution with large populations for performance-based optimisation are discussed, with examples from both academia and industry showing a wide range of applications.
keywords Design exploration, genetic programming, human–computer interaction, interactive genetic algorithms, k-means clustering, parametric design
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_123
id ecaade2018_123
authors Loos, Lennert and De Laet, Lars
year 2018
title A Structurally Informed Design Process by Real-time Data Visualisations
doi https://doi.org/10.52842/conf.ecaade.2018.1.687
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 687-696
summary This paper will discuss data visualisation in structural engineering for comparing design alternatives. By having the structural information of all different design proposals at hand, the designer is able to make informed design decisions. The authors developed a tool for creating interactive graphs while designing structures in a parametric design environment. In this work a case study of different structural design alternatives of a stadium roof is presented. Based on this design case, some graphs and the new informed design approach will be explained. Also the implementation of the tool within a parametric design environment with its advantages and issues is discussed.
keywords Data visualisation; Computer-aided design; Decision making; Structural design
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201816304
id ijac201816304
authors Miao, Yufan; Reinhard Koenig, Katja Knecht, Kateryna Konieva, Peter Buš and Mei-Chih Chang
year 2018
title Computational urban design prototyping: Interactive planning synthesis methods—a case study in Cape Town
source International Journal of Architectural Computing vol. 16 - no. 3, 212-226
summary This article is motivated by the fact that in Cape Town, South Africa, approximately 7.5 million people live in informal settlements and focuses on potential upgrading strategies for such sites. To this end, we developed a computational method for rapid urban design prototyping. The corresponding planning tool generates urban layouts including street network, blocks, parcels and buildings based on an urban designer’s specific requirements. It can be used to scale and replicate a developed urban planning concept to fit different sites. To facilitate the layout generation process computationally, we developed a new data structure to represent street networks, land parcellation, and the relationship between the two. We also introduced a nested parcellation strategy to reduce the number of irregular shapes generated due to algorithmic limitations. Network analysis methods are applied to control the distribution of buildings in the communities so that preferred neighborhood relationships can be considered in the design process. Finally, we demonstrate how to compare designs based on various urban analysis measures and discuss the limitations that arise when we apply our method in practice, especially when dealing with more complex urban design scenarios.
keywords Procedural modeling, spatial synthesis, generative design, urban planning
series journal
email
last changed 2019/08/07 14:03

_id acadia18_72
id acadia18_72
authors Nagy, Danil; Stoddart, Jim; Villaggi, Lorenzo; Burger, Shane; Benjamin, David
year 2018
title Digital Dérive. Reconstructing urban environments based on human experience
doi https://doi.org/10.52842/conf.acadia.2018.072
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 72-81
summary This paper describes a novel method for reconstructing urban environments based on individual occupant experience. The method relies on a low-cost off-the-shelf 360-degree camera to capture video and audio data from a natural walk through the city. It then uses a custom workflow based on an open-source Structure from Motion (SfM) library to reconstruct a dense point cloud from images extracted from the 360-degree video. The point cloud and audio data are then represented within a virtual reality (VR) model, creating a multisensory environment that immerses the viewer into the subjective experience of the occupant.

This work questions the role of precision and fidelity in our experience and representation of a “real” physical environment. On the one hand, the resulting VR environment is less complete and has lower fidelity than digital environments created through traditional modeling and rendering workflows. On the other hand, because each point in the point cloud is literally sampled from the actual environment, the resulting model also captures more of the noise and imprecision that characterizes our world. The result is an uncanny immersive experience that is less precise than traditional digital environments, yet represents many more of the unique physical characteristics that define our urban experiences.

keywords full paper, urban design & analysis, representation + perception, interactive simulations, virtual reality
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id caadria2018_057
id caadria2018_057
authors Nandavar, Anirudh, Petzold, Frank, Nassif, Jimmy and Schubert, Gerhard
year 2018
title Interactive Virtual Reality Tool for BIM Based on IFC - Development of OpenBIM and Game Engine Based Layout Planning Tool - A Novel Concept to Integrate BIM and VR with Bi-Directional Data Exchange
doi https://doi.org/10.52842/conf.caadria.2018.1.453
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 453-462
summary With recent advancements in VR (Virtual Reality) technology in the past year, it has emerged as a new paradigm in visualization and immersive HMI (Human-machine Interface). On the other hand, in the past decades, BIM (Building Information Modelling) has emerged as the new standard of implementing construction projects and is quickly becoming a norm than just a co-ordination tool in the AEC industry.Visualization of the digital data in BIM plays an important role as it is the primary communication medium to the project participants, where VR can offer a new dimension of experiencing BIM and improving the collaboration of various stakeholders of a project. There are both open source and commercial solutions to extend visualization of a BIM project in VR, but so far, there are no complete solutions that offer a pure IFC format based solution, which makes the VR integration vendor neutral. This work endeavors to develop a concept for a vendor-neutral BIM-VR integration with bi-directional data exchange in order to extend VR as a collaboration tool than a mere visualization tool in the BIM ecosystem.
keywords BIM; VR; IFC; Unity; BIM-VR integration; HMI
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_375
id ecaade2018_375
authors Pienaru, Meram-Irina
year 2018
title The City as a Playground - Game tools for interactive planning
doi https://doi.org/10.52842/conf.ecaade.2018.2.679
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 679-686
summary The emergence of a data space (Big Data and IoT) and, with it, the proliferation of communication means, led many scholars to describe the city through a series of concepts like the informational city, the intelligent city or the cybercity, all of them being characterized by a strong networked consciousness (Castells, Graham, Boyer). The hypothesis of this paper is that game methodology is now gaining momentum and can act as enabler of smarter communities by an increasing access to data infrastructures. This is why the city can be seen as a series of connected playgrounds where interactive tools can support citizen engagement and decision making processes. It does so by going through relevant theoretical background on gamification in the urban context and best practices, to finally describe two student projects developed at CHORA Conscious City, TU Berlin. The two projects are experimental and explore the capabilities of interactive tools in order to support planning processes.
keywords Gamification; Interactive tools; Networked consciousness; Intelligent communities
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2018_385
id ecaade2018_385
authors Schulz, Daniel, Reiter, Felix, Metche, Alexander and Werner, Liss C.
year 2018
title Data Flow - a GIS based interactive planning tool for educational facilities
doi https://doi.org/10.52842/conf.ecaade.2018.1.497
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 497-506
summary This paper describes the development of a Grasshopper-based planning support tool for urban planning. The tool aims at the analysis of demand in educational facilities and the optimization of their location and capacities. It was developed for the use case of Berlin using only publicly available resources and data sets. Through preprocessed GIS- and statistical data plus an easy-access interface, the tool encourages people from different backgrounds and even those with no professional knowledge in planning, to engage in urban decision making. Although being initially aimed at contributing to a moderated participation process, the tool's simple GUI (graphical user interface) and open source backend, make it usable in any setup - without a briefed advisor or the need for later professional evaluation by another party.
keywords urban planning; data visualization; gamification; education; GIS
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_335
id ecaade2018_335
authors Seifert, Nils and Petzold, Frank
year 2018
title Architects & Algorithms - Developing Interactive Visualizations for Architectural Communication
doi https://doi.org/10.52842/conf.ecaade.2018.1.361
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 361-370
summary The paper presents the concept and results of a seminar that addresses the intersecting fields of architecture and urbanism, data and information visualization as well as information technology. In the first part of the paper, an introduction to the seminar topic and relevance in the context of architectural education and practice is given. Subsequently, the course concept, the learning contents and the corresponding learning objectives are presented. In the second part, selected student projects are shown as exemplary course results. In the conclusion, the results of the seminar for students, teachers and research implications are discussed. The overall aim of this publication is to draw on the experience gained in this field of education to offer starting points for others in developing similar teaching concepts and support for their implementation.
keywords Urban Planning; Programming; Information Design; Data Visualization; Smart City; Processing
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia18_82
id acadia18_82
authors Sun, Chengyu; Zheng, Zhaohua; Sun, Tongyu
year 2018
title Hybrid Fabrication. A free-form building process with high on-site flexibility and acceptable accumulative error
doi https://doi.org/10.52842/conf.acadia.2018.082
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 82-87
summary Although digital fabrication has a booming development in the building industry, especially in freeform building, its further application in onsite operations is still limited because of the huge flexibility required in programming. On the contrary, traditional manual fabrication onsite deals perfectly with problems that always accompany fatal accumulative errors in freeform building. This study explores a hybrid fabrication paradigm to take advantage of both in an onsite freeform building project, in which there is a cycling human–computer interactive process consisting of manual operation and computer guidance in real time. A Hololens-Kinect system in a framework of typical project camera systems is used in the demonstration. When human builders perceive, decide, and operate the irregular foam bricks in a complex onsite environment, the computer keeps updating the current form through 3D scanning and prompting the position and orientation of the next brick through augmented display. From a starting vault, the computer always fine tunes its control surface according to the gradually installed bricks and keeps following a catenary formula. Thus, the hybrid fabrication actually benefits from the flexibility based on human judgment and operation, and an acceptable level of accumulative error can be handled through computer guidance concerning the structural performance and formal accuracy.
keywords work in progress, vr/ar/mr, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_279
id ecaade2018_279
authors Wortmann, Thomas, Akbar, Zuardin and Schroepfer, Thomas
year 2018
title Surveying Fitness Landscapes with Performance Explorer - Supporting the Design of a Better Tomorrow with Interactive Visualizations
doi https://doi.org/10.52842/conf.ecaade.2018.1.621
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 621-630
summary Increasing applications of parametric design and performance simulations by architectural designers present opportunities to design more resource- and energy-efficient buildings via simulation-based optimization. But Architectural Design Optimization (ADO) is less widespread that one might expect, due to, among other challenges, the problematic integration of optimization with architectural design. This problematic integration stems from a contrast between "wicked" or "co-evolving" architectural design problems and optimization problems. To mitigate the contrast between architectural and optimization problems, this paper presents Performance Explorer, an interactive, visual tool for performance-informed design space exploration (DSE). Performance-informed DSE emphasizes selection, refinement, and understanding over finding highest-performing design candidates. Performance Explorer allows interactive DSE via a visualization of a fitness landscape, with real-time feedback provided with a surrogate model. Performance Explorer is evaluated through a user test with thirty participants and emerges as more supportive and enjoyable to use than manual search and/or optimization.
keywords Architectural Design Optimization; Performance-informed Design; Interactive Visualization; Design Tool
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_237
id caadria2018_237
authors Yi, Taeha, Lee, Injung, Lee, Chae-Seok, Lee, Gi Bbeum, Kim, Meereh and Lee, Ji-Hyun
year 2018
title Interactive Data Acquisition for CBR System Based Smart Home Assistant - Utilizing Function-Behavior-Structure Framework
doi https://doi.org/10.52842/conf.caadria.2018.2.525
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 525-534
summary This research aims to develop a Case-Based Reasoning (CBR) system that recommends services to users in IoT environment. To develop this system, we establish a framework that designs raw data into analyzable information using Function-Behavior-Structure properties. Also, we develop an interactive flow of data acquisition that builds up cases gradually by gathering data through conversational interactions between the system and its user. This research develop a prototype of this system based on simulated cases. Finally, the prototype of this system was evaluated by experts in the field of system design to verify how the service (solution) recommended by system is similar with them. The results of this evaluation showed an agreement of average 54%, but found that there was a big difference from the experts in the specific context. This result implies that it is necessary to improve the context awareness in the reasoning process of this system.
keywords Case Based Reasoning; Function-Behavior-Structure framework; Service recommendation; IoT environment; Conversation
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
doi https://doi.org/10.52842/conf.acadia.2018.366
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_257
id ecaade2018_257
authors Guo, Zhe, Yin, Hao and Yuan, Philip F.
year 2018
title Spatial Redesign Method Based on Behavior Data Visualization System - UWB interior positioning technology based office space redesign method research
doi https://doi.org/10.52842/conf.ecaade.2018.2.577
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 577-584
summary There is a typical symbiotic relationship between behavior and space. Design and evaluation of space are also inseparable from people's behavioral needs. Therefore, the study of behavior patterns can be regarded as the process of exploring the relationship between human and space. Traditional behavioral research lacks precise micro-individual data and analytical tools to express complex environments, and is more inclined to macro and qualitative static analysis. With the maturity of indoor positioning technology, the use of big data as a medium to quantitatively study the laws of behavior has gradually penetrated into the micro-level of indoor space. This paper begins with a brief introduction of the behavioral performance research process in history. The paper then describes the method that constructs the observation, quantification and visualization process of behavior data by using UWB positioning technology and visualization implementation system through an on-site experiment of office space. The last part of this paper discusses the establishment of spatial redesign method by mining the behavior data, and translating the results into spatial attributes.
keywords behavior data visualization; UWB interior positioning technology; data mining; spatial redesign method
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_w02
id ecaade2018_w02
authors Jabi, Wassim and Aish, Robert
year 2018
title Non-manifold Topology for Architectural and Engineering Modelling
doi https://doi.org/10.52842/conf.ecaade.2018.1.057
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 57-60
summary Non-manifold topology (NMT) allows the user to construct light-weight conceptual spatial architectural models which define the overall enclosure and the internal cellular division within that enclosure. The objective of this workshop is to give participants hands-on opportunities with a new software library that we have been developing under a research grant from the Leverhulme Trust. On the first day, the concepts of non-manifold topology will be introduced, including non-regular modelling operations. On the second day, we will introduce two plug-ins, which have been interfaced to our NMT tools: a) building energy simulation using OpenStudio and EnergyPlus and b) structural analysis software.
keywords Non-manifold topology; Visual data flow programming; Building performance simulation; Computational design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_310
id ecaade2018_310
authors Jabi, Wassim, Aish, Robert, Lannon, Simon, Chatzivasileiadi, Aikaterini and Wardhana, Nicholas Mario
year 2018
title Topologic - A toolkit for spatial and topological modelling
doi https://doi.org/10.52842/conf.ecaade.2018.2.449
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 449-458
summary This paper describes non-manifold topology (NMT) as it relates to the field of architecture and presents Topologic, an open-source software modelling library enabling hierarchical and topological representations of architectural spaces, buildings and artefacts through NMT. Topologic is designed as a core library and additional plugins to visual data flow programming (VDFP) software. The software architecture and class hierarchy are explained and two domain-specific demonstrative tools (TopologicEnergy and TopologicStructure) are presented to illustrate how third-party software developers could use Topologic to build their own solutions. The paper concludes with a reflection on the benefits and limitations of NMT in the design and simulation workflows and outlines future work.
keywords Non-manifold topology; Visual data flow programming; Building performance simulation; Structural analysis; Computational design; Building information modelling
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2018_1875
id sigradi2018_1875
authors Kalantari, Cruze-Garza; Banner, Pamela; Contreras-Vidal, Jose Luis
year 2018
title Computationally Analyzing Biometric Data and Virtual Response Testing in Evaluating Learning Performance of Educational Setting Through
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 390-396
summary Due to construction costs, the human effects of innovations in architectural design can be expensive to test. Post-occupancy studies provide valuable data about what did and did not work in the past, but they cannot provide direct feedback for new ideas that have not yet been attempted. This presents designers with something of a dilemma. How can we harness the best potential of new technology and design innovation, while avoiding costly and potentially harmful mistakes? The current research use virtual immersion and biometric data to provide a new form of extremely rigorous human-response testing prior to construction. The researchers’ hypothesis was that virtual test runs can help designers to identify potential problems and successes in their work prior to its being physically constructed. The pilot study aims to develop a digital pre-occupancy toolset to understand the impact of different interior design variables of learning environment (independent variables) on learning performance (dependent variable). This project provides a practical toolset to test the potential human impacts of architectural design innovations. The research responds to a growing call in the field for evidence-based design and for an inexpensive means of evaluating the potential human effects of new designs. Our research will address this challenge by developing a prototype mobile brain-body imaging interface that can be used in conjunction with virtual immersion.
keywords Signal Processing; Brain; EEG; Virtual Reality; Big Data; Learning Performance
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_268021 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002