CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 41

_id caadria2018_324
id caadria2018_324
authors Mansoori, Maryam, Kalantar, Negar, Creasy, Terry and Rybkowski, Zofia
year 2018
title Toward Adaptive Architectural Skins - Designing Temperature-Responsive Curvilinear Surfaces
doi https://doi.org/10.52842/conf.caadria.2018.2.329
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 329-338
summary This research investigated the possibility of creating adaptable and precise curvilinear surfaces through the deformation of flat wooden surfaces. A prototype design system was developed to accomplish this task. The goal was to take a commonly-used architectural material, which is valued for its environmental sustainability and its aesthetic qualities, and to re-conceptualize it for use in cutting-edge adaptive digital designs. We therefore sought to develop a way to create wooden surfaces that could predictably transform in response to environmental stimuli. We successfully developed and tested the reversible deformation of a wooden surface by laminating a shape-memory polymer onto a kerfed wooden plane. The composite obtains its responsiveness from the shape-memory polymer, and its curvature direction and structural stability from the kerfed wood. The composite is able to deform to a defined curvilinear surface when heated to 40-60 degrees Celsius, and then self-transform back to the original flat surface when cooled. In addition to demonstrating kinetic behavior for a wood-based composite, the prototype offers a practical technique that can be used by designers to create flexible, inexpensive fabrication and packaging strategies.
keywords Environmental-Responsive Architecture; Shape Memory Polymer; Wood Fabrication; Continuous Curvilinear Surfaces
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_110
id ecaade2018_110
authors Nguyen, Binh Vinh Duc, Watlom, Thanonchai, Peng, Chengzhi and Wang, Tsung-Hsien
year 2018
title Prototyping Adaptive Architecture - Balancing Flexibility of Folding Patterns and Adaptability of Micro-Kinetic Movements
doi https://doi.org/10.52842/conf.ecaade.2018.2.391
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 391-400
summary The design process of dynamic architecture has been an emerging topic in recent studies, in which researchers try to find an effective method of generating and controlling adaptive components. In this paper, we present a digital-physical modelling process that seeks to explore tectonic fusion of origami folding patterns and micro-kinetic movements. A flexible modular prototype system is developed and evaluated through combining origami-based fabrication simulation and mathematical characterisation mimicking the pinecone's nastic movements. The modular design system is then applied to an urban site as a test case study. The results show how the pinecone-like nastic movements may be translated into design and fabrication of an adaptive architecture. We discuss the lessons learned from the digital-physical prototyping process finding the balance between geometric flexibility and micro-kinetic adaptability.
keywords adaptive architecture; origami folding patterns; micro-kinetic movements; pinecone; parametric modelling; digital-physical prototyping
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia18_98
id acadia18_98
authors Fox, Michael; Schulitz, Marc; Gershfeld, Mikhail; Cohen, Marc
year 2018
title Full Integration: Closing the Gap on Technology Readiness
doi https://doi.org/10.52842/conf.acadia.2018.098
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 98-107
summary This paper discusses the authors’ experiences and lessons learned through designing and constructing small- and large-scale robotic prototypes and the fully integrated use of VR and AR for design. Also of focus here are the methodological tools utilized to implement this student-led research in an interdisciplinary educational environment, as well as the design explorations of Mars habitation systems. Through the systems engineering approach, students will generate ideas that may or may not make it to the final design development stage, but may potentially be valuable to future real exploration habitats and mission architectures. The final prototype allows an assessment of the focus parameters, which are the vessels’ transformation capacities and layout adaption. The design objective of this project is to examine strategies for commonality between an interplanetary vehicle (IPV) and a Mars surface habitat. The presented design proposals address this challenge to create a common habitation system in both habitats so that crew members will be familiar with the layout, function, and location throughout the expedition. The design tools operate at the intersection of architectural layout design, mechanics, and structural design, and use origami folding techniques and structural form-finding concepts to generate shell action rigidity. In addition, the project develops a strategy for mobility and transformation of the surface habitat prior to its transformed configuration. The value here lies in understanding lessons from this strategy for both the design process as well as efficiency and optimization in design as a model for terrestrial design.
keywords full paper, bim, flexible structures, performance + simulation, representation + perception, building technologies, vr/ar/mr
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id ecaade2018_w13
id ecaade2018_w13
authors Karóczkai, Ákos
year 2018
title Introduction to Parametric Design - Basics of Parametric design with Rhino and Grasshopper with a focus on BIM (ARCHICAD)
doi https://doi.org/10.52842/conf.ecaade.2018.1.061
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 61-62
summary Parametric design, computer-generated geometries are a big buzzword in today's architectural world. This technology is an important tool even today but it has an increasing importance in the future of effective architecture and design.This is the description of the "Introduction to Parametric Design" workshop
keywords Rhinoceros; Grasshopper; Parametric; design
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_w14
id ecaade2018_w14
authors Karóczkai, Ákos
year 2018
title Parametric BIM Models in ARCHICAD - The Grasshopper - ARCHICAD Live Connection
doi https://doi.org/10.52842/conf.ecaade.2018.1.063
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 63-64
summary Parametric modelling is a very trending topic in the Architecture Engineering and Construction industry. There is an ever-growing challenge in the industry about how it is possible to document freeform and very design-oriented projects (created in Rhinoceros) in BIM. The ultimate goal of architectural and design projects is to be able to realize the building based on the 2D documentation. Currently Rhinoceros and Grasshopper are the industry-leading algorithmic solutions in the AEC industry. To complement such workflows, GRAPHISOFT developed a live connection between Grasshopper and ARCHICAD in order to generate BIM models, directly from the Visual Programming Interface (Grasshopper) and bridge the gap between the freeform, conceptual- and the BIM worlds.
keywords Parametric; BIM; ARCHICAD
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201917205
id ijac201917205
authors Mangrich, Camila Poeta; Luis Henrique Pavan, Fernanda Gomes, Lucas Oliveira, Jose Kos and Jean Everson Martina
year 2019
title Campus regenerative design supported by university Wi-Fi connections
source International Journal of Architectural Computing vol. 17 - no. 2, 206-219
summary A 60-year-old Brazilian university campus reflects its development actions throughout history. The degradation of its water streams and automobiles prioritization has significantly impacted the ecosystems’ resilience and the university’s activities. This article explores data analytics and visualization of Wi-Fi authentication processes, whose data have been stored in the last 10 years. This noteworthy connections database is a powerful tool, still overlooked due to the remarkable risks for users’ privacy. Brazil has followed 2018 European regulations to protect data privacy, when working with personal data. Therefore, we present an anonymization process that prevents one to identify and distinguish a subject within a set of subjects of the database. Three studies illustrate our examination of data potential to understand the university’s dynamics. These inquiries present relevant contributions to the process of planning and implementing campus green areas at the rivers’ edges, pedestrian and cycle paths, and places to facilitate interdisciplinary encounters.
keywords University campus planning, regenerative design, data visualization, data analytics, data anonymization
series journal
email
last changed 2019/08/07 14:04

_id sigradi2018_1476
id sigradi2018_1476
authors Brarda, María Cecilia
year 2018
title Type in motion: The representation of the illocutionary force through the expression of the kinetic typographic form
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1142-1149
summary The objective is to analyze how type in motion contributes to the representation and transmission of the illocutionary force of a statement in the field of communication and digital animation. This is a context characterized by being a hybrid of image and sound, of a esthetic and technological diversity and mixtures of representation techniques and animation of different types of motion graphics. The expressive form of the signs of writing is crossed by the variables time, movement and sound and from here their ability to transmit the illocutionary force is enhanced.
keywords Typography in movement; Illocutionary force; Kinetic writing; Digital animation; Typographic form
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1879
id sigradi2018_1879
authors Danesh Zand, Foroozan; Baghi, Ali; Kalantari, Saleh
year 2018
title Digitally Fabricating Expandable Steel Structures Using Kirigami Patterns
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 724-731
summary This article presents a computational approach to generating architectural forms for large spanning structures based on a “paper-cutting” technique. In this traditional artform, a flat sheet is cut and scored in such a way that a small application of force prompts it to expand into a three-dimensional structure. To make these types of expandable structures feasible at an architectural scale, four challenges had to be met during the research. The first was to map the kinetic properties of a paper-cut model, investigating formative parameters such as the width and frequency of cuts to determine how they affect the resulting structure. The second challenge was to computationally simulate the paper-cut structure in an accurate fashion. We accomplished this task using finite element analysis in the Ansys software platform. The third challenge was to create a prediction model that could precisely forecast the characteristics of a paper-cutting pattern. We made significant strides in this demanding task by using a data-mining approach and regression analysis through 400 simulations of various cutting patterns. The final challenge was to verify the efficiency and accuracy of our prediction model, which we accomplished through a series of physical prototypes. Our resulting computational paper-cutting system can be used to estimate optimal cutting patterns and to predict the resulting structural characteristics, thereby providing greater rigor to what has previously been an ad-hoc and experimental design approach.
keywords Transformable Paper-cut; Design method; Prediction Model; Regression analysis; Physical prototype
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaaderis2018_116
id ecaaderis2018_116
authors Giannopoulou, Effimia, Montás Laracuente, Nelson Bernardo and Baquero, Pablo
year 2018
title Qualitative Study on two Kinetic System Simulations - Experiments Based on Shape Memory Material and Stepper Motors
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 95-102
keywords This investigation intends to compare two computational design experiments operating on two kinetic architecture (Zuk and Clark 1970) design application domains: Shape-memory material (SMM) activated grids and stepper-actuated (SA) responsive skins. In the first one, the goal was to build a standard way of simulating SMM, which can be used as actuators in the construction of kinetic structures and in the second, to simulate and construct a responsive skin according to human interaction using kinect and stepper motors. In both experiments, a similar generative workflow was employed, combining insights from materials and mechanical systems. The objective is to investigate kinetic performance, kinetic design methodology, simulation implementation and applications within the two separate design domains. The general hypothesis is that both experiments become design workflows in themselves as real-time, dynamic modeling systems. A qualitatively study of both sets of cases, is taking in count general, simulation and application aspects, using evaluation criteria including workflow, material quantity, data capture and mechanical properties.
series eCAADe
email
last changed 2018/05/29 14:33

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
doi https://doi.org/10.52842/conf.acadia.2018.226
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaaderis2018_112
id ecaaderis2018_112
authors Kontovourkis, Odysseas and Konatzii, Panagiota
year 2018
title Design-static analysis and environmental assessment investigation based on a kinetic formwork-driven by digital fabrication principles
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 131-140
keywords This research focuses on design-static analysis and environmental assessment procedures that are based on the idea of a flexible kinetic formwork used as the automated mechanism for the production of bricks for porous wall structures. A key aspect of this investigation is the Life Cycle Assessment (LCA) analysis study that is applied in order to achieve, in parallel with the automated procedure, the sustainable potential of the products. For this purpose, the design and construction flexibility of the product is taken into account from the early design decision making stage by examining different sizes of bricks under fabrication including massive or porous ones in order to test their design and static performance, aiming to adapt their shape in multiple functional and environmental scenarios. In parallel, the LCA impact of the given design scenarios are taken into consideration, again from the early design phase, and include, among other objectives, material minimization, less environmental impact of building materials and less energy consumption based on the proposed digital fabrication technology. This is examined by comparing digital design and robotic automated results using three types of ecological materials.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_306
id caadria2018_306
authors Liu, Jie, Ma, Hongtao, Tang, Ning, Xu, Weiguo and Luo, Dan
year 2018
title Kinetair: Interactive Stairs with Multiple Functions
doi https://doi.org/10.52842/conf.caadria.2018.2.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-378
summary Kinetair is an interactive stairs prototype which could change its appearance according to the surrounding conditions, providing a diversity of functions, such as stairs, exhibition walls, furniture and so on. This research is based on the Interactive Architecture theory, integrating with digital fabrication technology. This paper will illustrate the origin of the concept, the concept development process, the fabrication process and the various possible application of Kinetair. This experiment evokes us to rethink the fundamental meanings of the architecture components in a brand new perspective, and stimulates designers to explore the new features of conventional constructions with cutting-edge technologies.
keywords interactive stairs; stair design; kinetic structure; dynamic design; adaptive form
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_201
id ecaade2018_201
authors Mansourimajoumerd, Parinaz and Mahdavinejad, Mohammadjavad
year 2018
title Kinetic Architecture - Reinterpreting Persian Mathematics and Astronomy
doi https://doi.org/10.52842/conf.ecaade.2018.1.605
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 605-612
summary The world where humans live in, is constantly changing. In order to interact with these conditions, it is necessary for the architects to create an environment with sufficient dynamics based on the needs and behavior of its users. Kinetic architecture allows occupants to experience new environments which could cause raising the efficiency of the buildings. Therefore, constructions with kinetic elements could serve better utilitarian purposes in different fields.In the following essay, studies are about using kinetic design and fabrication method in one project despite ordinary ways regard to the two main points; 1. The impact of Khayyam's mathematics and astronomy on the proposed kinetic architecture and 2. Creating interaction Between Indigenous ideas and Contemporary Architecture in Khayyam Memorial Pavilion. As a result, a model is designed and several prototypes have been built.This essay illustrates that with making a connection among architecture and other fields of study could lead designers to be more creative according to the existing limitation in each project.
keywords Kinetic architecture; Interactive architecture; Hyperboloid modules; Omar Khayyam
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2018_319
id ecaade2018_319
authors Tauscher, Helga
year 2018
title Follow the Sun - Architectural model-making with electronic components
doi https://doi.org/10.52842/conf.ecaade.2018.1.707
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 707-714
summary This paper explores the possibilities of using low-tech electronic components in the context of architectural model-making. It first presents a DIY toolkit to create hard- and software for working models supporting architectural designs that respond kinetically to changing light conditions. Second, a workshop format consisting of five independent modules is proposed. Third, the results of a pilot workshop are reported. The paper concludes with a discussion of the workshop results and potential further work.
keywords Model-making; low-tech; responsive design; kinetic design
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2018_140
id caadria2018_140
authors Wang, Chun-Yung and Hou, June-Hao
year 2018
title Analysis and Applications of Theo Jansen's Linkage Mechanism - Theo Jansen's Linkage Mechanism on Kinetic Architecture
doi https://doi.org/10.52842/conf.caadria.2018.2.359
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 359-368
summary The research is analysis the mechanism structure of the Theo Jansen's linkage. Studied how the linkage works. How does the crank work to make footsteps cycle. In this research studied the dynamic and kinetic mode of this structure and changing the length of the linkages. Make the Theo Jansen's mechanism that have more possibility of kinetic movement that is different from the previous walking mode. Using Rhinoceros's Grasshopper computer software to build a simulation system. To test and generate the possibility of the linkage's shape. Also simulate the how the linkage will be to run specific routes. The system can be made by single modularization which can do multiple used of kinetic system. The proposed deformation of the linkage and dynamic system which include the building facade changes pattern, openings, switching lighting system, and facade shading system can run with mechanism.
keywords Theo Jansen’s Mechanism; Kinetic architecture; mechanism linkage
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2018_1722
id sigradi2018_1722
authors Zheliazkova, Maia; Savova, Biliana; Naboni, Roberto
year 2018
title Plant-inspired Kinetic Systems for Architecture
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 338-345
summary This paper explores kinetic mechanisms which enable building systems with features belonging to the living systems, such as resilience and adaptivity. Adopting a bio-inspired approach, the research employs plants as biological models for the development of multi-performance kinetic structures. Nature-based kinetic principles are transferred at the micro, meso and macro scale, informing a compliant bilayer cellular membrane. Through the synthesis of environmental pressure and interior emergent requisites, an adaptable organic skin is here conceptualized to mediate environmental conditions such as energy flows and lighting in a dynamic way
keywords Bio-inspired Design; Computational Design; Kinetic System
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia18_294
id acadia18_294
authors Kieffer, Lynn; Nicholas, Paul
year 2018
title Pneumatically Actuated Material. Exploration of the mophospace of an adaptable system of soft actuators
doi https://doi.org/10.52842/conf.acadia.2018.294
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 294-301
summary This research in progress investigates a design and fabrication method of an adaptable and programmable composite material in an embodied computation system. It develops a workflow for a behavior-based model, the exploration of the morpho-space associated with the combinatorial assembly and the actuation of soft elements. The aggregation of individually actuatable and soft units in a system creates a large potential regarding adaptability, flexibility and reconfigurability, through a non-rigid and non-mechanical system. The cells are developed through a process of prototyping on origami and auxetic pattern inspired soft robotic elements. Every soft cell is pneumatically actuated through a negative pressure environment. The computational simulation is informed by the prototyping process and its findings. The simulation-based design of such an assembled system allows prediction of the aggregated shape and outputs a sequencing table, describing the actuation status of every cell and can create a tool to communicate between material and computational system
keywords work in progress,pneumatic actuation, adaptable soft material
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
doi https://doi.org/10.52842/conf.acadia.2018.216
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1389
id sigradi2018_1389
authors Capone, Mara; Lanzara, Emanuela
year 2018
title Kerf bending: ruled double curved surfaces manufacturing
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 653-660
summary Knowledge of geometric properties of surfaces is crucial for resolution of many manufacturing problems. Developability is an important feature of a surface that allows its manufacture from a flat "strip" of a "flexible" and "non-deformable" material. Digital fabrication technologies and parametric design tools, based on knowledge of geometry, are changing designer way to think. Our research in the field of non-developable surfaces fabrication move from paneling to "kerfing". This technique allows to transform a rigid material in a flexible one. The main problem to solve is how to cut the flat shape to obtain the design surface.
keywords Non-developable surfaces; Developable surfaces; Shape grammar; Parametric design; Kerfing
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2HOMELOGIN (you are user _anon_411830 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002