CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 626

_id acadia18_196
id acadia18_196
authors Zhang, Yan; Grignard; Aubuchon, Alexander; Lyons, Keven; Larson, Kent
year 2018
title Machine Learning for Real-time Urban Metrics and Design Recommendations
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 196-205
doi https://doi.org/10.52842/conf.acadia.2018.196
summary Cities are growing, becoming more complex, and changing rapidly. Currently, community engagement for urban decision-making is often ineffective, uninformed, and only occurs in projects’ later stages. To facilitate a more collaborative and evidence-based urban decision- making process for both experts and non-experts, real-time feedback and optimized suggestions are essential. However, most of the current tools for urban planning are neither capable of performing complex simulations in real time nor of providing guidance for better urban performance.

CityMatrix was introduced to address these challenges. Machine learning techniques were applied to achieve real-time prediction of multiple urban simulations, and thousands of city configurations were simulated. The simulation results were used to train a convolutional neural network (CNN) to predict the traffic and solar performance of unseen city configurations. The prediction with the CNN is thousands of times faster than the original simulations and maintains a high-quality representation of the results. This machine learning approach was applied as a versatile, quick, accurate, and computationally efficient method not only for real-time feedback, but also for optimized design recommendations. Users involved in the evaluation of this project had a better understanding of the embodied trade-offs of the city and achieved their goals in an efficient manner.

keywords full paper, optimization, collaboration, urban design & analysis, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_052
id caadria2018_052
authors Fung, Enrica and Crolla, Kristof
year 2018
title Choreographed Architecture - Body-Spatial Exploration
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 101-110
doi https://doi.org/10.52842/conf.caadria.2018.1.101
summary This paper presents a design-methodological case study that looks into the practical expansion of conventional conceptual architectural design media by incorporating contemporary technology of motion capture. It discusses challenges of integrating dance movement as a real-time input parameter for architectural design that aims at translating body motion into space. The paper consists of four parts, beginning with a historic background overview of scientists, physiologists, artists, choreographers, and architects who have attempted capturing body motion and turning the motion into space. The second part of the paper discusses the iterative development of the 'Dance Machine' as a methodological tool for the integration of motion capture into conceptual architectural design. Thirdly, the paper discusses tested design applications of the 'Dance Machine' by looking at two sited applications. Finally, the overall methodology is critically assessed and discussed in the light of continuous development of creative applications of motion capturing technology. The paper concludes by highlighting the architectural potential found in specific qualities of dance and by advocating for a broader palette of tools, techniques, and input methods for the conceptual design of architecture.
keywords Choreographed architecture; Motion capture; Conceptual design media; Space design; Human body
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2018_056
id caadria2018_056
authors Chirkin, Artem, Pishniy, Maxim and Sender, Arina
year 2018
title Generilized Visibility-Based Design Evaluation Using GPU
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
doi https://doi.org/10.52842/conf.caadria.2018.2.483
summary Visibility plays an important role in perception and use of an urban design, and thus often becomes a target of design analysis. This work presents a fast method of evaluating various visibility-based design characteristics, such as isovists or insolation exploiting the GPU rendering pipeline and compute shaders. The proposed method employs a two-stage algorithm on each point of interest. First, it projects the visible space around a vantage point onto an equirectangular map. Second, it folds the map using a flexibly defined function into a single value that is associated with the vantage point. Being executed on a grid of points in a 3D scene, it can be visualized as a heat map or utilized by another algorithm for further design analysis. The developed system provides nearly real-time analysis tools for an early-stage design process to a broad audience via web services.
keywords design analysis; design evaluation; GPU; isovist; insolation
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2018.2.401
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_399
id ecaade2018_399
authors Cutellic, Pierre
year 2018
title UCHRON - An Event-Based Generative Design Software Implementing Fast Discriminative Cognitive Responses from Visual ERP BCI
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 131-138
doi https://doi.org/10.52842/conf.ecaade.2018.2.131
summary This research aims at investigating BCI technologies in the broad scope of CAAD applications exploiting early visual cognition in computational design. More precisely, this paper will describe the investigation of key BCI and ML components for the implementation and development of a software supporting this research : Uchron. It will be organised as follows. Firstly, it will introduce the pursued interest and contribution that visual-ERP EEG based BCI application for Generative Design may provide through a synthetic review of precedents and BCI technology. Secondly, selected BCI components will be described and a methodology will be presented to provide an appropriate framework for a CAAD software approach. This section main focus is on the processing component of the BCI. It distinguishes two key aspects of discrimination and generation in its design and proposes a new model based on GAN for modulated adversarial design. Emphasis will be made on the explicit use of inference loops integrating fast human cognitive responses and its individual capitalisation through time in order to reflect towards the generation of design and architectural features.
keywords Human Computer Interaction; Neurodesign; Generative Design; Design Computing and Cognition; Machine Learning
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_315
id ecaade2018_315
authors Koehler, Daniel, Abo Saleh, Sheghaf, Li, Hua, Ye, Chuwei, Zhou, Yaonaijia and Navasaityte, Rasa
year 2018
title Mereologies - Combinatorial Design and the Description of Urban Form.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
doi https://doi.org/10.52842/conf.ecaade.2018.2.085
summary This paper discusses the ability to apply machine learning to the combinatorial design-assembly at the scale of a building to urban form. Connecting the historical lines of discrete automata in computer science and formal studies in architecture this research contributes to the field of additive material assemblies, aggregative architecture and their possible upscaling to urban design. The following case studies are a preparation to apply deep-learning on the computational descriptions of urban form. Departing from the game Go as a testbed for the development of deep-learning applications, an equivalent platform can be designed for architectural assembly. By this, the form of a building is defined via the overlap between separate building parts. Building on part-relations, this research uses mereology as a term for a set of recursive assembly strategies, integrated into the design aspects of the building parts. The models developed by research by design are formally described and tested under a digital simulation environment. The shown case study shows the process of how to transform geometrical elements to architectural parts based merely on their compositional aspects either in horizontal or three-dimensional arrangements.
keywords Urban Form; Discrete Automata ; Combinatorics; Part-Relations; Mereology; Aggregative Architecture
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_166
id acadia18_166
authors Kvochick, Tyler
year 2018
title Sneaky Spatial Segmentation. Reading Architectural Drawings with Deep Neural Networks and Without Labeling Data
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 166-175
doi https://doi.org/10.52842/conf.acadia.2018.166
summary Currently, it is nearly impossible for an artificial neural network to generalize a task from very few examples. Humans, however, excel at this. For instance, it is not necessary for a designer to see thousands or millions of unique examples of how to place a given drawing symbol in a way that meets the economic, aesthetic, and performative goals of the project. In fact, the goals can be (and usually are) communicated abstractly in natural language. Machine learning (ML) models, however, do need numerous examples. The methods that we explore here are an attempt to circumvent this in order to make ML models more immediately useful.

In this work, we present progress on the application of contemporary ML techniques to the design process in the architecture, engineering, and construction (AEC) industry. We introduce a technique to partially circumvent the data hungriness of neural networks, which is a significant impediment to their application outside of the ML research community. We also show results on the applicability of this technique to real-world drawings and present research that addresses how some fundamental attributes of drawings as images affect the way they are interpreted in deep neural networks. Our primary contribution is a technique to train a neural network to segment real-world architectural drawings after using only generated pseudodrawings.

keywords full paper, representation + perception, computation, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id caadria2023_362
id caadria2023_362
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldabous, Rahaf, Aldaboos, Sarah and Lopez Rodriguez, Alvaro
year 2023
title Fabrication of Complex Clay Structures Through an Augmented Reality Assisted Platform
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 413–422
doi https://doi.org/10.52842/conf.caadria.2023.1.413
summary The relationship between clay manufacturing and architectural design has a long trajectory that has been explored since the early 2000s. From a 3D printing or assembly perspective, using clay in combination with automated processes in architecture to achieve computational design solutions is well established. (Yuan, Leach & Menges, 2018). Craft-based clay art, however, still lacks effective computational design integration. With the improvement of Augmented Reality (AR) technologies (Driscoll et al., 2017) and the appearance of digital platforms, new opportunities to integrate clay manufacturing and computational design have emerged. The concept of digitally transferring crafting skills, using holographic guidance and machine learning, could make clay crafting accessible to more workers while creating the potential to share and exchange digital designs via an open-source manufacturing platform. In this context, this research project explores the potential of integrating computational design and clay crafting using AR. Moreover, it introduces a platform that enables AR guidance and the digital transfer of fabrication skills, allowing even amateur users with no prior making experience to produce complex clay components.
keywords Computer vision, Distributed manufacturing, Augmented craftsmanship, Augmented reality, Real-time modification, Hololens
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2023_10
id ecaade2023_10
authors Sepúlveda, Abel, Eslamirad, Nasim and De Luca, Francesco
year 2023
title Machine Learning Approach versus Prediction Formulas to Design Healthy Dwellings in a Cold Climate
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 359–368
doi https://doi.org/10.52842/conf.ecaade.2023.2.359
summary This paper presents a study about the prediction accuracy of daylight provision and overheating levels in dwellings when considering different methods (machine learning vs prediction formulas), training, and validation data sets. An existing high-rise building located in Tallinn, Estonia was considered to compare the best ML predictive method with novel prediction formulas. The quantification of daylight provision was conducted according to the European daylight standard EN 17037:2018 (based on minimum Daylight Factor (minDF)) and overheating level in terms of the degree-hour (DH) metric included in local regulations. The features included in the dataset are the minDF and DH values related to different combinations of design parameters: window-to-floor ratio, level of obstruction, g-value, and visible transmittance of the glazing system. Different training and validation data sets were obtained from a main data set of 5120 minDF values and 40960 DH values obtained through simulation with Radiance and EnergyPlus, respectively. For each combination of training and validation dataset, the accuracy of the ML model was quantified and compared with the accuracy of the prediction formulas. According to our results, the ML model could provide more accurate minDF/DH predictions than by using the prediction formulas for the same design parameters. However, the amount of room combinations needed to train the machine-learning model is larger than for the calibration of the prediction formulas. The paper discuss in detail the method to use in practice, depending on time and accuracy concerns.
keywords Optimization, Daylight, Thermal Comfort, Overheating, Machine Learning, Predictive Model, Dwellings, Cold Climates
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
doi https://doi.org/10.52842/conf.acadia.2019.392
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2018_290
id caadria2018_290
authors Wang, Zhenyu, Shi, Jia, Yu, Chuanfei and Gao, Guoyuan
year 2018
title Automatic Design of Main Pedestrian Entrance of Building Site Based on Machine Learning - A Case Study of Museums in China's Urban Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 227-235
doi https://doi.org/10.52842/conf.caadria.2018.2.227
summary The main pedestrian entrance of the building site has a direct influence on the use of the buildings, so the selection of the main pedestrian entrance is very important in the process of architectural design. The correct selection of the main pedestrian entrance of building site depends on the experience of designers and environment data collected by designers, the process is time consuming and inefficient, especially when the building site located in complex urban environment. In order to improve the efficiency of design process, we used online map to collect museums information in China as training samples, and constructing artificial neural networks to predict the direction of the main pedestrian entrance. After the training, we get the prediction model with 79% prediction accuracy. Although the accuracy still need to be improved, it creates a new approach to analysis the main pedestrian entrance of the site and worth further researching.
keywords Artificial Neural Network (ANN); Main Pedestrian Entrance of Building Site; Automatic Design
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2018.2.545
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_010
id caadria2018_010
authors Han, Lu and Cardoso Llach, Daniel
year 2018
title Ludi: A Concurrent Physical and Digital Modeling Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-523
doi https://doi.org/10.52842/conf.caadria.2018.1.515
summary This paper explores the potential of a concurrent physical and digital modeling environment. We describe a prototype for a novel design modeling interface where users can take advantage of the affordances of both physical and digital modeling environments, and work back and forth between the two. Using Processing, along with the Kinect depth sensor, the system uses depth data read from a physical modeling space to produce an enhanced digital representation in real time. Users can design by moving and stacking wooden blocks in a physical space, which is represented (and enhanced) digitally as a "voxel space," which can in turn be edited digitally. The result is a proof-of-concept concurrent physical and digital modeling environment combining design affordances specific to each media: the physical space offers tactile and embodied forms of design inter-action, and the digital space offers parametric editing capabilities, along with the capacity to view the modeling space from different perspectives, and perform basic analyses on designs. Following a brief review of experimental computational and tangible interaction design interfaces, the paper discusses the system's implementation, its limitations, and future steps.
keywords Computational Design; Processing; Concurrent Modeling Environment; Tangible Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_260
id ecaade2018_260
authors Kallegias, Alexandros
year 2018
title Design by Computation - A material driven study
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 279-284
doi https://doi.org/10.52842/conf.ecaade.2018.2.279
summary The paper aims to address methods of creating a system for design through material studies that are employed as feedback on a computational digital model. The case study described in this paper is the output of an exploration that has investigated physical transformation, interaction and wood materiality over the period of two weeks of the international architecture programme AA Athens Visiting School in Greece. Real-time performative form-responsive methods based on bending and stretching have been developed and simulated in an open-source programming environment. The output of the simulation has been informed by the results of material tests that took place in parallel and have served as inputs for the fine-tuning of the simulation. Final conclusions were made possible from these explorations that enabled the fabrication of a prototype using wood veneer at one-to-one scale. From a pedagogical aspect, the research main focus is to improve the quality of architectural education by learning through making. This is made possible using advanced computational techniques and coupling them with material studies towards an integrated system for architectural prototypes within a limited time frame.
keywords materiality; computation; 1:1 scale prototyping; simulation; fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_169
id ecaade2018_169
authors Kasahara, Maki, Matsushita, Kiwa and Mizutani, Akihiro
year 2018
title Learning from Generative Design System in the 60's - Case Study of Agricultural City Project by Kisho Kurokawa
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 95-102
doi https://doi.org/10.52842/conf.ecaade.2018.2.095
summary The concept of generative design in Architecture and Urbanism can be found in the 60's before the wide availability of computer technology. This paper decodes one of the urban projects by Metabolist in 1960, which was intended to be a generative system applicable to other sites and evolves over time. Through our analysis, we de-code the formulation process, and verified our hypothesis by re-coding into the program using the software, Rhinoceros and Grasshopper. We found that the determinate factors rule more at the macro level of the project, but the parameters are set by taking the local conditions into account. At the micro level, the system leaves more freedom to accommodate various needs, reflecting the philosophy of the Metabolists. The investigation on this historical predecessor can provide useful insights for parameter settings in future generative system design.
keywords Generative Design; Grasshopper; Kisho Kurokawa
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_122
id caadria2018_122
authors Leung, Emily, Asher, Rob, Butler, Andrew, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title Redback BIM - Developing 'De-Localised' Open-Source Architecture-Centric Tools
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 21-30
doi https://doi.org/10.52842/conf.caadria.2018.2.021
summary Emerging technologies that use data have contributed to the success of communication all over the world. Social media and gaming industries have already taken advantage of the web to provide synchronous communication and updated information. Conversely, existing methods of communication within the AEC industry require multiple platforms, such as emails and file sharing services in conjunction with 3D Modelling software, to inform changes made by stakeholders, resulting in file duplication and limited accessibility to the latest version, while augmenting existing practice's inefficiency. As communication is critical to the success of a project and should be enhanced, Redback BIM promises to establish a workflow for a dynamic platform, while achieving similar results to that of a 3D modelling program hosted on the web. Using existing open-source web development software, multiple users will be able to collaboratively organise and synchronise changes made to the design scheme in real-time. Features such as this would enable more fluid communication between multiple stakeholders within the life of a project.
keywords De-localised Workspaces; Web-based Software Platforms; Data; Open-source; Collaboration
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
doi https://doi.org/10.52842/conf.caadria.2018.2.165
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_219
id ecaade2018_219
authors Bai, Nan, Ye, Wenqia, Li, Jianan, Ding, Huichao, Pienaru, Meram-Irina and Bunschoten, Raoul
year 2018
title Customised Collaborative Urban Design - A Collective User-based Urban Information System through Gaming
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 419-428
doi https://doi.org/10.52842/conf.ecaade.2018.1.419
summary As we step into a new data-based information age, it is important to get citizens involved in the whole design process. Our research tries to build up a user-based urban information system by collecting the data of neighborhood land use preference from all the residents through gaming. The result of each individual decision will be displayed in real time using Augmented Reality technology, while the collective decision dataset will be stored, analyzed and learnt by computer, forming an optimal layout that meets the highest demand of the community. A pre-experiment has been conducted in a. an abstract virtual site and b. an existing site by collecting opinions from 122 participants, which shows that the system works well as a new method for collaborative design. This system has the potential to be applied both in realistic planning processes, as a negotiation toolkit, and in virtual urban forming, in the case of computer games or space colonization.
keywords Collaborative Design; Customization; Urban Design; Gaming; Information System
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_7357 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002