CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 609

_id ecaade2018_399
id ecaade2018_399
authors Cutellic, Pierre
year 2018
title UCHRON - An Event-Based Generative Design Software Implementing Fast Discriminative Cognitive Responses from Visual ERP BCI
doi https://doi.org/10.52842/conf.ecaade.2018.2.131
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 131-138
summary This research aims at investigating BCI technologies in the broad scope of CAAD applications exploiting early visual cognition in computational design. More precisely, this paper will describe the investigation of key BCI and ML components for the implementation and development of a software supporting this research : Uchron. It will be organised as follows. Firstly, it will introduce the pursued interest and contribution that visual-ERP EEG based BCI application for Generative Design may provide through a synthetic review of precedents and BCI technology. Secondly, selected BCI components will be described and a methodology will be presented to provide an appropriate framework for a CAAD software approach. This section main focus is on the processing component of the BCI. It distinguishes two key aspects of discrimination and generation in its design and proposes a new model based on GAN for modulated adversarial design. Emphasis will be made on the explicit use of inference loops integrating fast human cognitive responses and its individual capitalisation through time in order to reflect towards the generation of design and architectural features.
keywords Human Computer Interaction; Neurodesign; Generative Design; Design Computing and Cognition; Machine Learning
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_052
id caadria2018_052
authors Fung, Enrica and Crolla, Kristof
year 2018
title Choreographed Architecture - Body-Spatial Exploration
doi https://doi.org/10.52842/conf.caadria.2018.1.101
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 101-110
summary This paper presents a design-methodological case study that looks into the practical expansion of conventional conceptual architectural design media by incorporating contemporary technology of motion capture. It discusses challenges of integrating dance movement as a real-time input parameter for architectural design that aims at translating body motion into space. The paper consists of four parts, beginning with a historic background overview of scientists, physiologists, artists, choreographers, and architects who have attempted capturing body motion and turning the motion into space. The second part of the paper discusses the iterative development of the 'Dance Machine' as a methodological tool for the integration of motion capture into conceptual architectural design. Thirdly, the paper discusses tested design applications of the 'Dance Machine' by looking at two sited applications. Finally, the overall methodology is critically assessed and discussed in the light of continuous development of creative applications of motion capturing technology. The paper concludes by highlighting the architectural potential found in specific qualities of dance and by advocating for a broader palette of tools, techniques, and input methods for the conceptual design of architecture.
keywords Choreographed architecture; Motion capture; Conceptual design media; Space design; Human body
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia18_156
id acadia18_156
authors Huang, Weixin; Zheng, Hao
year 2018
title Architectural Drawings Recognition and Generation through Machine Learning
doi https://doi.org/10.52842/conf.acadia.2018.156
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 156-165
summary With the development of information technology, the ideas of programming and mass calculation were introduced into the design field, resulting in the growth of computer- aided design. With the idea of designing by data, we began to manipulate data directly, and interpret data through design works. Machine Learning as a decision making tool has been widely used in many fields. It can be used to analyze large amounts of data and predict future changes. Generative Adversarial Network (GAN) is a model framework in machine learning. It’s specially designed to learn and generate output data with similar or identical characteristics. Pix2pixHD is a modified version of GAN that learns image data in pairs and generates new images based on the input. The author applied pix2pixHD in recognizing and generating architectural drawings, marking rooms with different colors and then generating apartment plans through two convolutional neural networks. Next, in order to understand how these networks work, the author analyzed their framework, and provided an explanation of the three working principles of the networks, convolution layer, residual network layer and deconvolution layer. Lastly, in order to visualize the networks in architectural drawings, the author derived data from different layer and different training epochs, and visualized the findings as gray scale images. It was found that the features of the architectural plan drawings have been gradually learned and stored as parameters in the networks. As the networks get deeper and the training epoch increases, the features in the graph become more concise and clearer. This phenomenon may be inspiring in understanding the designing behavior of humans.
keywords full paper, design study, generative design, ai + machine learning, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id ecaade2018_111
id ecaade2018_111
authors Khean, Nariddh, Fabbri, Alessandra and Haeusler, M. Hank
year 2018
title Learning Machine Learning as an Architect, How to? - Presenting and evaluating a Grasshopper based platform to teach architecture students machine learning
doi https://doi.org/10.52842/conf.ecaade.2018.1.095
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 95-102
summary Machine learning algorithms have become widely embedded in many aspects of modern society. They have come to enhance systems, such as individualised marketing, social media services, and search engines. However, contrasting its growing ubiquity, the architectural industry has been comparatively resistant in its adoption; objectively one of the slowest industries to integrate with machine learning. Machine learning expertise can be separate from professionals in other fields; however, this separation can be a major hinderance in architecture, where interaction between the designer and the design facilitates the production of favourable outcomes. To bridge this knowledge gap, this research suggests that the solution lies with architectural education. Through the development of a novel educative framework, the research aims to teach architecture students how to implement machine learning. Exploration of student-centred pedagogical strategies was used to inform the conceptualisation of the educative module, which was subsequently implemented into an undergraduate computational design studio, and finally evaluated on its ability to effectively teach designers machine learning. The developed educative module represents a step towards greater technological adoption in the architecture industry.
keywords Artificial Intelligence; Machine Learning; Neural Networks; Student-Centred Learning; Educative Framework
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_232
id acadia18_232
authors Kilian, Axel
year 2018
title The Flexing Room Architectural Robot. An Actuated Active-Bending Robotic Structure using Human Feedback
doi https://doi.org/10.52842/conf.acadia.2018.232
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 232-241
summary Advances in autonomous control of object-scale robots, both anthropomorphic and vehicular, are posing new human–machine interface challenges. In architecture, very few examples of autonomous inhabitable robotic architecture exist. A number of factors likely contribute to this condition, among them the scale and cost of architectural adaptive systems, but on a more fundamental conceptual level also the questions of how architectural robots would communicate with their human inhabitants. The Flexing Room installation is a room-sized actuated active-bending skeleton structure. It uses rudimentary social feedback by counting people to inform its behavior in the form of actuated poses of the room enclosure. An operational full-scale prototype was constructed and tested. To operate it no geometric-based simulation was used; the only communication between computer and structure was in sending values for the air pressure settings and in gathering sensor feedback. The structure’s physical state was resolved through the embodied computation of its interconnected parts, and the people-counting sensor feedback influences its next action. Future work will explore the development of learning processes to improve the human–machine coexistence in space.
keywords full paper, fabrication & robotics, non-production robotics, materials/adaptive systems, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_315
id ecaade2018_315
authors Koehler, Daniel, Abo Saleh, Sheghaf, Li, Hua, Ye, Chuwei, Zhou, Yaonaijia and Navasaityte, Rasa
year 2018
title Mereologies - Combinatorial Design and the Description of Urban Form.
doi https://doi.org/10.52842/conf.ecaade.2018.2.085
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
summary This paper discusses the ability to apply machine learning to the combinatorial design-assembly at the scale of a building to urban form. Connecting the historical lines of discrete automata in computer science and formal studies in architecture this research contributes to the field of additive material assemblies, aggregative architecture and their possible upscaling to urban design. The following case studies are a preparation to apply deep-learning on the computational descriptions of urban form. Departing from the game Go as a testbed for the development of deep-learning applications, an equivalent platform can be designed for architectural assembly. By this, the form of a building is defined via the overlap between separate building parts. Building on part-relations, this research uses mereology as a term for a set of recursive assembly strategies, integrated into the design aspects of the building parts. The models developed by research by design are formally described and tested under a digital simulation environment. The shown case study shows the process of how to transform geometrical elements to architectural parts based merely on their compositional aspects either in horizontal or three-dimensional arrangements.
keywords Urban Form; Discrete Automata ; Combinatorics; Part-Relations; Mereology; Aggregative Architecture
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_166
id acadia18_166
authors Kvochick, Tyler
year 2018
title Sneaky Spatial Segmentation. Reading Architectural Drawings with Deep Neural Networks and Without Labeling Data
doi https://doi.org/10.52842/conf.acadia.2018.166
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 166-175
summary Currently, it is nearly impossible for an artificial neural network to generalize a task from very few examples. Humans, however, excel at this. For instance, it is not necessary for a designer to see thousands or millions of unique examples of how to place a given drawing symbol in a way that meets the economic, aesthetic, and performative goals of the project. In fact, the goals can be (and usually are) communicated abstractly in natural language. Machine learning (ML) models, however, do need numerous examples. The methods that we explore here are an attempt to circumvent this in order to make ML models more immediately useful.

In this work, we present progress on the application of contemporary ML techniques to the design process in the architecture, engineering, and construction (AEC) industry. We introduce a technique to partially circumvent the data hungriness of neural networks, which is a significant impediment to their application outside of the ML research community. We also show results on the applicability of this technique to real-world drawings and present research that addresses how some fundamental attributes of drawings as images affect the way they are interpreted in deep neural networks. Our primary contribution is a technique to train a neural network to segment real-world architectural drawings after using only generated pseudodrawings.

keywords full paper, representation + perception, computation, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_w12
id ecaade2018_w12
authors Rahbar, Morteza
year 2018
title Application of Artificial Intelligence in Architectural Generative Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.071
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-72
summary In this workshop, data-driven models will be discussed and how they could change the way architects think, design and analyse. Both supervised and unsupervised learning models will be discussed and different projects will be referred as examples. Deep learning models are the third part of the workshop and more specifically, Generative Adversarial Networks will be mentioned in more detail. The GAN's open a new field of generative models in design which is based on data-driven process and we will go into detail with GANs, their branches and how we could test a sample architecture generative problem with GANs.
keywords Artificial Intelligence; Machine Learning; Generative Design; Knowledge based Design; GAN
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2023_10
id ecaade2023_10
authors Sepúlveda, Abel, Eslamirad, Nasim and De Luca, Francesco
year 2023
title Machine Learning Approach versus Prediction Formulas to Design Healthy Dwellings in a Cold Climate
doi https://doi.org/10.52842/conf.ecaade.2023.2.359
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 359–368
summary This paper presents a study about the prediction accuracy of daylight provision and overheating levels in dwellings when considering different methods (machine learning vs prediction formulas), training, and validation data sets. An existing high-rise building located in Tallinn, Estonia was considered to compare the best ML predictive method with novel prediction formulas. The quantification of daylight provision was conducted according to the European daylight standard EN 17037:2018 (based on minimum Daylight Factor (minDF)) and overheating level in terms of the degree-hour (DH) metric included in local regulations. The features included in the dataset are the minDF and DH values related to different combinations of design parameters: window-to-floor ratio, level of obstruction, g-value, and visible transmittance of the glazing system. Different training and validation data sets were obtained from a main data set of 5120 minDF values and 40960 DH values obtained through simulation with Radiance and EnergyPlus, respectively. For each combination of training and validation dataset, the accuracy of the ML model was quantified and compared with the accuracy of the prediction formulas. According to our results, the ML model could provide more accurate minDF/DH predictions than by using the prediction formulas for the same design parameters. However, the amount of room combinations needed to train the machine-learning model is larger than for the calibration of the prediction formulas. The paper discuss in detail the method to use in practice, depending on time and accuracy concerns.
keywords Optimization, Daylight, Thermal Comfort, Overheating, Machine Learning, Predictive Model, Dwellings, Cold Climates
series eCAADe
email
last changed 2023/12/10 10:49

_id cf2019_003
id cf2019_003
authors Steinfeld, Kyle; Katherine Park, Adam Menges and Samantha Walker
year 2019
title Fresh Eyes A framework for the application of machine learning to generative architectural design, and a report of activities at Smartgeometry 2018
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 22
summary This paper presents a framework for the application of Machine Learning (ML) to Generative Architectural Design (GAD), and illustrates this framework through a description of a series of projects completed at the Smart Geometry conference in May of 2018 (SG 2018) in Toronto. Proposed here is a modest modification of a 3-step process that is well-known in generative architectural design, and that proceeds as: generate, evaluate, iterate. In place of the typical approaches to the evaluation step, we propose to employ a machine learning process: a neural net trained to perform image classification. This modified process is different enough from traditional methods as to warrant an adjustment of the terms of GAD. Through the development of this framework, we seek to demonstrate that generative evaluation may be seen as a new locus of subjectivity in design.
keywords Machine Learning, Generative Design, Design Methods
series CAAD Futures
email
last changed 2019/07/29 14:08

_id caadria2018_000
id caadria2018_000
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 1
doi https://doi.org/10.52842/conf.caadria.2018.1
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, 578 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2018_001
id caadria2018_001
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 2
doi https://doi.org/10.52842/conf.caadria.2018.2
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, 610 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ijac201816202
id ijac201816202
authors Tamke, Martin; Paul Nicholas and Mateusz Zwierzycki
year 2018
title Machine learning for architectural design: Practices and infrastructure
source International Journal of Architectural Computing vol. 16 - no. 2, 123-143
summary In this article, we propose that new architectural design practices might be based on machine learning approaches to better leverage data-rich environments and workflows. Through reference to recent architectural research, we describe how the application of machine learning can occur throughout the design and fabrication process, to develop varied relations between design, performance and learning. The impact of machine learning on architectural practices with performance-based design and fabrication is assessed in two cases by the authors. We then summarise what we perceive as current limits to a more widespread application and conclude by providing an outlook and direction for future research for machine learning in architectural design practice.
keywords Machine learning, robotic fabrication, design-integrated simulation, material behaviour, feedback, Complex Modelling
series journal
email
last changed 2019/08/07 14:03

_id acadia18_394
id acadia18_394
authors Adel, Arash; Thoma, Andreas; Helmreich, Matthias; Gramazio, Fabio; Kohler, Matthias
year 2018
title Design of Robotically Fabricated Timber Frame Structures
doi https://doi.org/10.52842/conf.acadia.2018.394
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 394-403
summary This paper presents methods for designing nonstandard timber frame structures, which are enabled by cooperative multi-robotic fabrication at building-scale. In comparison to the current use of automated systems in the timber industry for the fabrication of plate-like timber frame components, this research relies on the ability of robotic arms to spatially assemble timber beams into bespoke timber frame modules. This paper investigates the following topics: 1) A suitable constructive system facilitating a just-in-time robotic fabrication process. 2) A set of assembly techniques enabling cooperative multi-robotic spatial assembly of bespoke timber frame modules, which rely on a man-machine collaborative scenario. 3) A computational design process, which integrates architectural requirements, fabrication constraints, and assembly logic. 4) Implementation of the research in the design and construction of a multi-story building, which validates the developed methods and highlights the architectural implications of this approach.
keywords full paper, fabrication & robotics, generative design, computation, timber architecture
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ijac201816406
id ijac201816406
authors As, Imdat; Siddharth Pal and Prithwish Basu
year 2018
title Artificial intelligence in architecture: Generating conceptual design via deep learning
source International Journal of Architectural Computing vol. 16 - no. 4, 306-327
summary Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph- based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.
keywords Architectural design, conceptual design, deep learning, artificial intelligence, generative design
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
doi https://doi.org/10.52842/conf.acadia.2018.176
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id ijac201816401
id ijac201816401
authors Doyle, Shelby and Nick Senske
year 2018
title Digital provenance and material metadata: Attribution and co-authorship in the age of artificial intelligence
source International Journal of Architectural Computing vol. 16 - no. 4, 271-280
summary This speculative essay examines a single drawing, produced in a collaboration between the authors and a Turtle robot, in a search for methods to evaluate and document provenance in artificial intelligence and robotic design. Reflecting upon the layers of authorship in our case study reveals the complex relationship that already exists between human and machine collaborators. In response to this unseen provenance, we propose new modes to document the full range of creative contribution to the design and production of artifacts from intellectual inputs to digital representations to physical labor. A more comprehensive system for artificial intelligence/robotic attribution could produce counter- narratives to technological development which more fully acknowledge the contributions of both humans and machines. As artificially intelligent design technologies distinguish themselves with distinct capabilities and eventual autonomy, a system of embedded attribution becomes the basis for human–machine collaboration, indeterminacy, and unexpected new applications for existing tools and methods.
keywords Artificial intelligence, robotics, metadata, attribution, co-authorship, ethics
series journal
email
last changed 2019/08/07 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_297194 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002