CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 625

_id sigradi2018_1563
id sigradi2018_1563
authors Karaoglan Cemre, Füsun; Alaçam, Sema
year 2018
title Design of a Post-Disaster Temporary Living Space Through the Use of Shape Evolution
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 191-198
summary As the increasing number of disasters taking place each year result in a larger number of people in need of urgent sheltering, temporary shelters become a more critical subject of architectural design. With this in mind, the aim of this study is to design a temporary post-disaster living space for the displaced people. Towards this aim, 2D layout possibilities are generated and evaluated with genetic algorithms. Different from the previous studies, the project focuses on the potential use of shape evolution and multi-objective genetic algorithms for the design of a disaster relief shelter. The results are expected to produce a holistic digital model that can respond to different post-disaster scenarios.
keywords Computational design; Emergency architecture; Genetic algorithms; Modularity; Mass customization
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_328
id acadia18_328
authors Kladeftira, Marirena; Shammas, Demetris; Bernhard, Mathias; Dillenburger, Benjamin
year 2018
title Printing Whisper Dishes. Large-scale binder jetting for outdoor installations
doi https://doi.org/10.52842/conf.acadia.2018.328
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 328-335
summary This research explores the design opportunities of a novel fabrication process for large scale architectural installations suitable for outdoor weather conditions. High resolution, bespoke geometries are easily fabricated at no extra cost in a continuous system using Binder Jet printing technology. The material properties of sandstone are considered a design drive for producing structural paths according to a finite element analysis. Several post processing materials are tested for strengthening the final geometry and providing a water resistant solution. The process is tested in a large, 1:1 sound installation of a pair of acoustic mirrors. First, this paper describes the specific potential and challenges of Binder Jet printing for outdoor applications. It, then, outlines the design principles of the sound device, the acoustic mirror, and their integration into a digital model. Finally, the computational design strategy is described, including topology optimization to reduce the weight/material and the integration of functional details
keywords work in progress, 3d printing, form finding, digital fabrication, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id sigradi2018_1451
id sigradi2018_1451
authors Massara Rocha, Bruno; Simão de Lima, Camilo
year 2018
title Open Design: Principles, Interfaces and Values Analysis
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1241-1249
summary This article discuss in which terms design, distribution and production processes have changed after the great technological revolution in a post-industrial era in order to become more democratic and easily shared. After a brief analysis of the economic impact brought by this digital revolution, the article presents newly design values and production environments that emerged from it. We focus in the Open Design movement to show how its process introduce new ways to create and produce architecture. The main idea is to enlighten and explain how Open Design enhances innovation and foster a new democratic practice based on freedom, collaboration and experimentation.
keywords Shared project; Open design; Maker movement; Digital fabrication; Cognitive capitalism
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202018202
id ijac202018202
authors Pasquero, Claudia and Marco Poletto
year 2020
title Bio-digital aesthetics as value system of post-Anthropocene architecture
source International Journal of Architectural Computing vol. 18 - no. 2, 120-140
summary It is timely within the Anthropocene era, more than ever before, to search for a non-anthropocentric mode of reasoning, and consequently designing. The PhotoSynthetica Consortium, established in 2018 and including London-based ecoLogicStudio, the Urban Morphogenesis Lab (Bartlett School of Architecture, University College London) and the Synthetic Landscape Lab (University of Innsbruck, Austria), has therefore been pursuing architecture as a research-based practice, exploring the interdependence of digital and biological intelligence in design by working directly with non-human living organisms. The research focuses on the diagrammatic capacity of these organisms in the process of growing and becoming part of complex bio-digital architectures. A key remit is training architects’ sensibility at recognising patterns of reasoning across disciplines, materialities and technological regimes, thus expanding the practice’s repertoire of aesthetic qualities. Recent developments in evolutionary psychology demonstrate that the human sense of beauty and pleasure is part of a co-evolutionary system of mind and surrounding environment. In these terms, human senses of beauty and pleasure have evolved as selection mechanisms. Cultivating and enhancing them compensate and integrate the functions of logical thinking to gain a systemic view on the planet Earth and the dramatic changes it is currently undergoing. This article seeks to illustrate, through a series of recent research projects, how a renewed appreciation of beauty in architecture has evolved into an operational tool to design and measure its actual ecological intelligence.
keywords Bio-digital, bio-computation, bio-city, effectiveness, empathy, impact, sensing
series journal
email
last changed 2020/11/02 13:34

_id acadia21_246
id acadia21_246
authors Safley, Nick
year 2021
title Reconnecting...
doi https://doi.org/10.52842/conf.acadia.2021.246
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 246-255.
summary This design research reimagines the architectural detail in a postdigital framework and proposes digital methods to work upon discrete tectonics. Drawing upon Marco Frascari's writing The Tell-the-Tale Detail, the study aims to reimagine tectonic thinking for focused attention after the digital turn. Today, computational tools are powerful enough to perform operations more similar to physical tools than in the earlier digital era. These tools create a "digital materiality," where architects can manipulate digital information in parallel and overlapping ways to physical corollaries. (Abrons and Fure, 2018) To date, work in this area has focused on materiality specifically. This project reinterprets tectonics using texture map editing and point cloud information, particularly reconceptualizing jointing using images. Smartphone-based 3D digital scanning was used to captured details from a series of Carlo Scarpa's influential works, isolating these details from their physical sites and focusing attention upon individual tectonic moments. As digital scans, these details problematize the rhetoric of smoothness and seamlessness prevalent in digital architecture as they are discretely construed loci yet composed of digital meshes. (Jones 2014) Once removed from their contexts, reconnecting the digital scans into compositions of "compound details" necessitated a series of new mechanisms for constructing and construing not native to the material world. Using Photoshop editing of texture-mapped images, digital texturing of meshes, and interpretation of the initial material constructions, new joints within and between these the digital scanned details were created to reframe the original detail for the post-digital.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2018_172
id ecaade2018_172
authors Al-Douri, Firas
year 2018
title The Employment of Digital Simulation in the Planning Departments in US Cities - How does it affect design and decision-making processes?
doi https://doi.org/10.52842/conf.ecaade.2018.2.539
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 539-548
summary The increased interactivity of digital simulation tools has offered a wide range of opportunities that may provoke a paradigmatic shift in urban design practice. Yet, research results did not provide any clear evidence that such shift seems to exist. Further studies are required to examine the methods and impact of their usage on decision-making and design outcome. To that goal, this research uses the single-case study design that has been pursued in three phases: literature review, online survey, and semi-structured interviews. The results have shown inadequacies, inconsistency, and ineffectiveness of usage of the tools that are most appropriate to the design activities of each phase and thus a limited impact on critical areas of the decision-making. The impact of the tools' usage is found to be correlated with not only the extent of their usage, but also with a variety of procedural and substantive factors such as the plan methodology, extent of tool's usage, choice of the appropriate tool, and planners' skills and capabilities in using those tools.
keywords Urban Simulation ; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2018_324
id caadria2018_324
authors Mansoori, Maryam, Kalantar, Negar, Creasy, Terry and Rybkowski, Zofia
year 2018
title Toward Adaptive Architectural Skins - Designing Temperature-Responsive Curvilinear Surfaces
doi https://doi.org/10.52842/conf.caadria.2018.2.329
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 329-338
summary This research investigated the possibility of creating adaptable and precise curvilinear surfaces through the deformation of flat wooden surfaces. A prototype design system was developed to accomplish this task. The goal was to take a commonly-used architectural material, which is valued for its environmental sustainability and its aesthetic qualities, and to re-conceptualize it for use in cutting-edge adaptive digital designs. We therefore sought to develop a way to create wooden surfaces that could predictably transform in response to environmental stimuli. We successfully developed and tested the reversible deformation of a wooden surface by laminating a shape-memory polymer onto a kerfed wooden plane. The composite obtains its responsiveness from the shape-memory polymer, and its curvature direction and structural stability from the kerfed wood. The composite is able to deform to a defined curvilinear surface when heated to 40-60 degrees Celsius, and then self-transform back to the original flat surface when cooled. In addition to demonstrating kinetic behavior for a wood-based composite, the prototype offers a practical technique that can be used by designers to create flexible, inexpensive fabrication and packaging strategies.
keywords Environmental-Responsive Architecture; Shape Memory Polymer; Wood Fabrication; Continuous Curvilinear Surfaces
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaaderis2023_45
id ecaaderis2023_45
authors Morton, David, Ahmed, Tarek MF and Humphery, Richard
year 2023
title BIM and Teaching in Architecture: Current thinking and approaches
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 105–115
summary Increasing use of BIM has represented a continuing shift in traditional assumptions on how we navigate the design process. BIM is affording the student the ability to gain a greater understanding of their design ideas via the exploration of scale, spatial organisation and structure, amongst many other design layers, in increasing levels of detail, at the same point in the design process. Architectural education is at a delayed tipping point where architectural students are increasingly looking towards BIM to streamline their design process drawn by the production of realistic visualisation, but with a lack of knowledge and skill in its application. With a lack of guidance and understanding around the application of BIM, the use of BIM in this manner overlooks the potential of BIM to construct and test virtual simulations of proposed schemes, to support design enquiry. A historical concern for the pedagogy constructed around the students’ design process is the application of methods and techniques that support the progression through the design process, (Ambrose, 2014; dash mei & Safari, 2018). This study examines the design process of architectural students and the interaction between analogue and digital methods used in design. These primary modes of communication, offer the opportunity to query the roles and rules of traditional architectural conventions around ‘problem finding’ and ‘problem solving’, challenging the ‘traditional’ design process examined by pioneers like Bruner (1966) and Schon (1987). These approaches are distilled from the findings of the study and presented as guidance to those teaching in architectural aBIMemia to align pedagogic goals to methods of abstraction in this new era of design education reconsidering digital methods in design.
keywords BIM, BIM, Design Process, Architecture, Learning
series eCAADe
email
last changed 2024/02/05 14:28

_id ecaade2018_229
id ecaade2018_229
authors Rogers, Jessie and Schnabel, Marc Aurel
year 2018
title Digital Design Ecology - An Analysis for an Intricate Framework of Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.459
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 459-468
summary This paper evaluates, along with expert assessment, the novel, evolving and creative instruments employed for a digital design process. Applications within this paper derive outputs which are attention-grabbing. These include Agent Simulations, Artistic Image Processing, Realistic Site Geometry, Projected 3D Space Sketching, Immersive 3D Space Sketching, Rhinoceros3D, Grasshopper3D, Fuzor, and Immersive Virtual Reality Presentation. The expert evaluations conclude that all design instruments and methodologies implemented within the digital design ecology work together well for educational purposes. Within the professional practice, however, the various tools could be implemented seamlessly; whereas some of them would not suit the industry from a time-cost perspective. Throughout this paper reason and insight becomes explained and is clear as to why various applications should be selected within various modes of operandi for design processes.
keywords Methodology Ecology; Agent Simulation; Digital Design; Virtual Reality; Photogrammetry; Image Processing
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v3_157
id acadia23_v3_157
authors C Niquille, Simone
year 2023
title Model Home
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Well, hello. Thanks for having me. Hopefully, not everyone is too exhausted. But we'll get through it. So, you know, in some ways I feel like a guest, an intruder -- there's different words -- to a conference such as this. I am trained as a graphic designer and a photographer. But somehow, you know, I find myself between disciplines. And one of them is architecture. What we will talk about today is a project that started around 2018 called ""Model Home"", which is sort of the larger chapter. Most of the work I do is either in writing essays, as well as film. There's not enough time to show the film today, but if you are interested, just come and ask me after.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2018_295
id ecaade2018_295
authors Dezen-Kempter, Eloisa, Cogima, Camila Kimi, Vieira de Paiva, Pedro Victor and Garcia de Carvalho, Marco Antonio
year 2018
title BIM for Heritage Documentation - An ontology-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.1.213
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 213-222
summary In the recent decades, the high-resolution remote sensing, through 3D laser scanning and photogrammetry benefited historic buildings maintenance, conservation, and restoration works. However, the dense surface models (DSM) generated from the data capture have nonstructured features as lack of topology and semantic discretization. The process to create a semantically oriented 3D model from the DSM, using the of Building Information Model technology, is a possibility to integrate historical information about the life cycle of the building to maintain and improving architectural valued building stock to its functional level and safeguarding its outstanding historical value. Our approach relies on an ontology-based system to represent the knowledge related to the building. Our work outlines a model-driven approach based on the hybrid data acquisition, its post-processing, the identification of the building' main features for the parametric modeling, and the development of an ontological map integrated with the BIM model. The methodology proposed was applied to a large-scale industrial historical building, located in Brazil. The DSM were compared, providing a qualitative assessment of the proposed method.
keywords Reality-based Surveying; Ontology-based System; BIM; Built heritage management
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2018_1248
id sigradi2018_1248
authors Eloy, Sara; Dias, Maria Ângela; Vermaas, Pieter E
year 2018
title User-centered shape grammars for housing transformations: towards post-handover grammars
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 156-164
summary This paper presents a post-handover shape grammar for introducing inhabitants wishes in the transformation of individual houses of the Malagueira housing complex by Álvaro Siza Vieira in Évora, Portugal. The presented research includes a case study developed in the context of the workshop Gramática da Forma em estudos de habitação - análise, geração e customização at the Universidade Federal do Rio de Janeiro, Brazil. In this paper we present the first developments of the Malagueira transformation grammar, including corpus of analysis, shape rules, and derivations, and we discuss the opportunities that shape grammar brings to user-centered design.
keywords Housing; Participatory design; Shape grammar; Transformation; Inhabitants
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia23_v1_34
id acadia23_v1_34
authors Gascon Alvarez, Eduardo; Curth, Alexander (Sandy); Feickert, Kiley; Martinez Schulte, Dinorah; Mueller, Caitlin; Ismail, Mohamed
year 2023
title Algorithmic Design for Low-Carbon, Low-Cost Housing Construction in Mexico
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 34-38.
summary Mexico is one of the most urbanized countries in the Global South, and simultaneously faces a rapidly increasing population and a deluge of inadequate housing (URBANET 2019). In 2016, it was estimated that 40 percent of all private residences in Mexico were considered inadequate by UN-Habitat (UN-Habitat 2018). As informal housing constitutes over half of all Mexican housing construction, the most vulnerable groups of the population are particularly impacted. Therefore, there is a serious need to innovate in the area of low-cost building construction for housing in Mexico. This research explores how shape-optimized concrete and earth construction could help provide adequate housing without jeopardizing the country’s commitment to sustainability.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2018_1822
id sigradi2018_1822
authors Gomez-Zamora, Paula ; Swarts, Matthew; Stern, Ilan; Valdes, Francisco
year 2018
title PZ Smart Flooring System: Spatiotemporal Occupancy Analyses for Architecture
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 937-941
summary This paper introduces, first, the value of obtaining dynamic information through smart environments for Architecture feedback at building scale. Second, it describes the co-evolution of the systems design for specific sensitivities required to perform meaningful analyses for the different scales. Third, it presents the significance of obtaining spatial and temporal occupancy data of high resolution, allowing significant new architectural analyses to emerge. Furthermore, it concludes by describing the vision for the future trajectory of this line of research.
keywords Smart Environments, Smart Buildings; Smart Flooring Systems; Post-occupancy Analyses; Spatiotemporal Occupancy; Piezo-based Flooring
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2018_1875
id sigradi2018_1875
authors Kalantari, Cruze-Garza; Banner, Pamela; Contreras-Vidal, Jose Luis
year 2018
title Computationally Analyzing Biometric Data and Virtual Response Testing in Evaluating Learning Performance of Educational Setting Through
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 390-396
summary Due to construction costs, the human effects of innovations in architectural design can be expensive to test. Post-occupancy studies provide valuable data about what did and did not work in the past, but they cannot provide direct feedback for new ideas that have not yet been attempted. This presents designers with something of a dilemma. How can we harness the best potential of new technology and design innovation, while avoiding costly and potentially harmful mistakes? The current research use virtual immersion and biometric data to provide a new form of extremely rigorous human-response testing prior to construction. The researchers’ hypothesis was that virtual test runs can help designers to identify potential problems and successes in their work prior to its being physically constructed. The pilot study aims to develop a digital pre-occupancy toolset to understand the impact of different interior design variables of learning environment (independent variables) on learning performance (dependent variable). This project provides a practical toolset to test the potential human impacts of architectural design innovations. The research responds to a growing call in the field for evidence-based design and for an inexpensive means of evaluating the potential human effects of new designs. Our research will address this challenge by developing a prototype mobile brain-body imaging interface that can be used in conjunction with virtual immersion.
keywords Signal Processing; Brain; EEG; Virtual Reality; Big Data; Learning Performance
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_142555 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002