CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 625
Reformat results as: short short into frame detailed detailed into frame
Referring to variations of the architectural drawing from a domestic typology, the paper uses high-precision digital tools tailored to quantitative image analysis and digital tools that sit outside the remit of architectural production, such as word processing, to present a new range of drawing techniques. By applying a series of traditional analytical procedures to the image, it reveals how these maneuvers can interrogate and dislocate any predetermined formal normalization.
The paper reveals that the interdisciplinary repurposing of precise digital toolsets therefore has explicit disciplinary consequences. These arise as a direct result of the recalibration of scale, the liberation of the bit’s representational capacity, and the pixel’s properties of color and brightness. It concludes by proposing that deliberate instances of translational imprecision are highly productive, because by liberating the fundamental qualitative properties of the fundamental digital units, these techniques shift the disciplinary agency of the architectural drawing
This work questions the role of precision and fidelity in our experience and representation of a “real” physical environment. On the one hand, the resulting VR environment is less complete and has lower fidelity than digital environments created through traditional modeling and rendering workflows. On the other hand, because each point in the point cloud is literally sampled from the actual environment, the resulting model also captures more of the noise and imprecision that characterizes our world. The result is an uncanny immersive experience that is less precise than traditional digital environments, yet represents many more of the unique physical characteristics that define our urban experiences.
In the paper, we describe the algorithms of the computational evaluation method. We also show how it can be used to introduce fabrication considerations into the design process by using it to rationalize several types of panels. Additionally, we demonstrate how the method can be used in complex, large-scale architectural projects to save machining time and materials by evaluating and altering the paneling subdivision.
We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.
For more results click below: