CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 625

_id acadia18_16
id acadia18_16
authors Anzalone, Phillip; Del Signore; Wit, Andrew John (eds.)
year 2018
title Notes on imprecision and infidelity
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 16-17
series ACADIA
type introduction
email
last changed 2019/01/07 12:21

_id acadia18_36
id acadia18_36
authors Austin, Matthew; Matthews, Linda
year 2018
title Drawing Imprecision. The digital drawing as bits and pixels
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 36-45
doi https://doi.org/10.52842/conf.acadia.2018.036
summary This paper explores the consequences of digitizing the architectural drawing. It argues that the fundamental unit of drawing has shifted from “the line” to an interactive partnership between bits and pixels. It also reveals how the developmental focus of imaging technology has been to synthesize and imitate the line using bits and pixels, rather than to explore their innate productive value and aesthetic potential.

Referring to variations of the architectural drawing from a domestic typology, the paper uses high-precision digital tools tailored to quantitative image analysis and digital tools that sit outside the remit of architectural production, such as word processing, to present a new range of drawing techniques. By applying a series of traditional analytical procedures to the image, it reveals how these maneuvers can interrogate and dislocate any predetermined formal normalization.

The paper reveals that the interdisciplinary repurposing of precise digital toolsets therefore has explicit disciplinary consequences. These arise as a direct result of the recalibration of scale, the liberation of the bit’s representational capacity, and the pixel’s properties of color and brightness. It concludes by proposing that deliberate instances of translational imprecision are highly productive, because by liberating the fundamental qualitative properties of the fundamental digital units, these techniques shift the disciplinary agency of the architectural drawing

keywords full paper, imprecision, representation, recalibration, theory, glitch aesthetics, algorithmic design, process
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_72
id acadia18_72
authors Nagy, Danil; Stoddart, Jim; Villaggi, Lorenzo; Burger, Shane; Benjamin, David
year 2018
title Digital Dérive. Reconstructing urban environments based on human experience
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 72-81
doi https://doi.org/10.52842/conf.acadia.2018.072
summary This paper describes a novel method for reconstructing urban environments based on individual occupant experience. The method relies on a low-cost off-the-shelf 360-degree camera to capture video and audio data from a natural walk through the city. It then uses a custom workflow based on an open-source Structure from Motion (SfM) library to reconstruct a dense point cloud from images extracted from the 360-degree video. The point cloud and audio data are then represented within a virtual reality (VR) model, creating a multisensory environment that immerses the viewer into the subjective experience of the occupant.

This work questions the role of precision and fidelity in our experience and representation of a “real” physical environment. On the one hand, the resulting VR environment is less complete and has lower fidelity than digital environments created through traditional modeling and rendering workflows. On the other hand, because each point in the point cloud is literally sampled from the actual environment, the resulting model also captures more of the noise and imprecision that characterizes our world. The result is an uncanny immersive experience that is less precise than traditional digital environments, yet represents many more of the unique physical characteristics that define our urban experiences.

keywords full paper, urban design & analysis, representation + perception, interactive simulations, virtual reality
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id acadia18_394
id acadia18_394
authors Adel, Arash; Thoma, Andreas; Helmreich, Matthias; Gramazio, Fabio; Kohler, Matthias
year 2018
title Design of Robotically Fabricated Timber Frame Structures
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 394-403
doi https://doi.org/10.52842/conf.acadia.2018.394
summary This paper presents methods for designing nonstandard timber frame structures, which are enabled by cooperative multi-robotic fabrication at building-scale. In comparison to the current use of automated systems in the timber industry for the fabrication of plate-like timber frame components, this research relies on the ability of robotic arms to spatially assemble timber beams into bespoke timber frame modules. This paper investigates the following topics: 1) A suitable constructive system facilitating a just-in-time robotic fabrication process. 2) A set of assembly techniques enabling cooperative multi-robotic spatial assembly of bespoke timber frame modules, which rely on a man-machine collaborative scenario. 3) A computational design process, which integrates architectural requirements, fabrication constraints, and assembly logic. 4) Implementation of the research in the design and construction of a multi-story building, which validates the developed methods and highlights the architectural implications of this approach.
keywords full paper, fabrication & robotics, generative design, computation, timber architecture
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_242
id acadia18_242
authors Anzalone, Phillip; Del Signore, Marcella; Wit, Andrew John (eds.)
year 2018
title Imprecision in Materials + Production
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 242-243
series ACADIA
type introduction
email
last changed 2019/01/07 12:22

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
doi https://doi.org/10.52842/conf.acadia.2018.312
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_136
id acadia18_136
authors Austern, Guy; Capeluto, Isaac Guedi; Grobman, Yasha Jacob
year 2018
title Fabrication-Aware Design of Concrete Façade Panels. A Computational Method For Evaluating the Fabrication of Large- Scale Molds in Complex Geometries
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 136-145
doi https://doi.org/10.52842/conf.acadia.2018.136
summary This paper presents a design methodology for concrete façade panels that takes into consideration constraints related to digital fabrication machinery. A computational method for the real-time evaluation of industrial mold-making techniques, such as milling and hot wire cutting, was developed. The method rapidly evaluates the feasibility, material use, and machining time of complex geometry molds for architectural façade elements. Calculation speed is achieved by mathematically approximating CAM-machining operations. As results are obtained in nearly real time, the method can be easily incorporated into the architectural design process during its initial stages, when changes to the design are more effective.

In the paper, we describe the algorithms of the computational evaluation method. We also show how it can be used to introduce fabrication considerations into the design process by using it to rationalize several types of panels. Additionally, we demonstrate how the method can be used in complex, large-scale architectural projects to save machining time and materials by evaluating and altering the paneling subdivision.

keywords full paper, fabrication & robotics, digital fabrication, performance + simulation, geometry
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
doi https://doi.org/10.52842/conf.acadia.2018.366
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_244
id acadia18_244
authors Belanger, Zackery; McGee, Wes; Newell, Catie
year 2018
title Slumped Glass: Auxetics and Acoustics
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 244-249
doi https://doi.org/10.52842/conf.acadia.2018.244
summary This research investigates the effect of curvature, at a variety of scales, on the acoustic properties of glass. Plate glass, which has predictable and uniform acoustically reflective behavior, can be formed into curved surfaces through a combination of parametrically-driven auxetic pattern generation, CNC water-jet cutting, and controlled heat forming. When curved, plate glass becomes “activated” and complex acoustically-diffusive behavior emerges. The parametrically-driven auxetic perforation pattern allows the curvature to be altered and controlled across a formed pane of glass, and a correlation is demonstrated between the level of curvature and the extent of acoustically diffusive behavior. Beyond individual panels, curved panes can be aggregated to extend acoustic influence to the entire interior room condition, and the pace at which acoustic energy is distributed can be controlled. In this work the parameters surrounding the controlled slumping of glass are described, and room-sized formal and acoustic effects are studied using wave-based acoustic simulation techniques. This paper discusses the early stages of work in progress.
keywords work in progress, materials and adaptive systems, performance and simulation, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
doi https://doi.org/10.52842/conf.acadia.2018.176
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id acadia18_276
id acadia18_276
authors Bilotti, Jeremy; Norman, Bennett; Rosenwasser, David; Leo Liu, Jingyang; Sabin, Jenny
year 2018
title Robosense 2.0. Robotic sensing and architectural ceramic fabrication
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 276-285
doi https://doi.org/10.52842/conf.acadia.2018.276
summary Robosense 2.0: Robotic Sensing and Architectural Ceramic Fabrication demonstrates a generative design process based on collaboration between designers, robotic tools, advanced software, and nuanced material behavior. The project employs fabrication tools which are typically used in highly precise and predetermined applications, but uniquely thematizes the unpredictable aspects of these processes as applied to architectural component design. By integrating responsive sensing systems, this paper demonstrates real-time feedback loops which consider the spontaneous agency and intuition of the architect (or craftsperson) rather than the execution of static or predetermined designs. This paper includes new developments in robotics software for architectural design applications, ceramic-deposition 3D printing, sensing systems, materially-driven pattern design, and techniques with roots in the arts and crafts. Considering the increasing accessibility and advancement of 3D printing and robotic technologies, this project seeks to challenge the erasure of materiality: when mistakes or accidents caused by inconsistencies in natural material are avoided or intentionally hidden. Instead, the incorporation of material and user-input data yields designs which are imbued with more nuanced traces of making. This paper suggests the potential for architects and craftspeople to maintain a more direct and active relationship with the production of their designs.
keywords full paper, fabrication & robotics, robotic production, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_424
id acadia18_424
authors Bucklin, Oliver; Drexler, Hans; Krieg, Oliver David; Menges, Achim
year 2018
title Integrated Solid Timber. A multi-requisite system for the computational design,fabrication, and construction of versatile building envelopes
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 424-433
doi https://doi.org/10.52842/conf.acadia.2018.424
summary The paper presents the development of a building system made from solid timber that fulfils the requirements of modern building skins while expanding the design possibilities through innovation in computational design and digital fabrication. Multiple strategies are employed to develop a versatile construction system that generates structure, enclosure and insulation while enabling a broad design space for contemporary architectural expression. The basic construction unit augments the comparatively high insulation values of solid timber by cutting longitudinal slits into beams, generating air chambers that further inhibit thermal conductivity. These units are further enhanced through a joinery system that uses advanced parametric modeling and computerized control to augment traditional joinery techniques. Prototypes of the system are tested at a building component level with digital models and physical laboratory tests. It is further evaluated in a demonstrator building to test development and further refine design, fabrication and assembly methods. Results are integrated into proposals for new methods of implementation. The results of the research thus far demonstrate the validity of the strategy, and continuing research will improve its viability as a building system.
keywords full paper, materials and adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_386
id acadia18_386
authors Chen, Canhui; Burry, Jane
year 2018
title (Re)calibrating Construction Simplicity and Design Complexity
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 386-393
doi https://doi.org/10.52842/conf.acadia.2018.386
summary Construction simplicity is crucial to cost control, however design complexity is often necessary in order to meet particular spatial performance criteria. This paper presents a case study of a semi-enclosed meeting pod that has a brief that must contend with the seemingly contradictory conditions of the necessary geometric complexities imperative to improved acoustic performance and cost control in construction. A series of deep oculi are introduced as architectural elements to link the pod interior to the outside environment. Their reveals also introduce sound reflection and scattering, which contribute to the main acoustic goal of improved speech privacy. Represented as a three-dimensional funnel like shape, the reveal to each opening is unique in size, depth and angle. Traditionally, the manufacturing of such bespoke architectural elements in many cases resulted in lengthy and costly manufacturing processes. This paper investigates how the complex oculi shape variations can be manufactured using one universal mold. A workflow using mathematical and computational operations, a standardized fabrication approach and customization through tooling results in a high precision digital process to create particular calculated geometries, recalibrated at each stage to account for the paradoxical inexactitudes and inevitable tolerances.
keywords work in progress,tolerance, developable surface, form finding, construction simplicity, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id acadia18_286
id acadia18_286
authors Claire Im, Hyeonji; AlOthman, Sulaiman; García del Castillo, Jose Luis
year 2018
title Responsive Spatial Print. Clay 3D printing of spatial lattices using real-time model recalibration
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 286-293
doi https://doi.org/10.52842/conf.acadia.2018.286
summary Additive manufacturing processes are typically based on a horizontal discretization of solid geometry and layered deposition of materials, the speed and the rate of which are constant and determined by the stability criteria. New methods are being developed to enable three-dimensional printing of complex self-supporting lattices, expanding the range of possible outcomes in additive manufacturing. However, these processes introduce an increased degree of formal and material uncertainty, which require the development of solutions specific to each medium. This paper describes a development to the 3D printing methodology for clay, incorporating a closed-loop feedback system of material surveying and self-correction to recompute new depositions based on scanned local deviations from the digital model. This Responsive Spatial Print (RSP) method provides several improvements over the Spatial Print Trajectory (SPT) methodology for clay 3D printing of spatial lattices previously developed by the authors. This process compensates for the uncertain material behavior of clay due to its viscosity, malleability, and deflection through constant model recalibration, and it increases the predictability and the possible scale of spatial 3D prints through real-time material-informed toolpath generation. The RSP methodology and early successful results are presented along with new challenges to be addressed due to the increased scale of the possible outcomes.
keywords work in progress, closed loop system, spatial clay printing, self-supporting lattice, in-situ printking, extrusion rate, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id acadia18_404
id acadia18_404
authors Clifford, Brandon; McGee, Wes
year 2018
title Cyclopean Cannibalism. A method for recycling rubble
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 404-413
doi https://doi.org/10.52842/conf.acadia.2018.404
summary Each year, the United States discards 375 million tons of concrete construction debris to landfills (U.S. EPA 2016), but this is a new paradigm. Past civilizations cannibalized their constructions to produce new architectures (Hopkins 2005). This paper interrogates one cannibalistic methodology from the past known as cyclopean masonry in order to translate this valuable method into a contemporary digital procedure. The work contextualizes the techniques of this method and situates them into procedural recipes which can be applied in contemporary construction. A full-scale prototype is produced utilizing the described method; demolition debris is gathered, scanned, and processed through an algorithmic workflow. Each rubble unit is then minimally carved by a robotic arm and set to compose a new architecture from discarded rubble debris. The prototype merges ancient construction thinking with digital design and fabrication methodologies. It poses material cannibalism as a means of combating excessive construction waste generation.
keywords full paper, cyclopean, algorithmic, robotic fabrication, stone, shape grammars, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia18_206
id acadia18_206
authors Farahi, Behnaz
year 2018
title HEART OF THE MATTER: Affective Computing in Fashion and Architecture
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 206-215
doi https://doi.org/10.52842/conf.acadia.2018.206
summary What if material interfaces could physically adapt to the user’s emotional state in order to develop a new affective interaction? By using emotional computing technologies to track facial expressions, material interfaces can help to regulate emotions. They can serve either as a tool for intelligence augmentation or as a means of leveraging an empathic relationship by developing an affective loop with the user. This paper explores how color- and shape-changing operations can be used as interactive design tools to convey emotional information, and is illustrated by two projects, one at the intimate scale of fashion and one at a more architectural scale. By engaging with design, art, psychology, and computer and material science, this paper envisions a world where material systems can detect the emotional responses of a user and reconfigure themselves in order to enter into a feedback loop with the user’s affective state and influence social interaction.
keywords full paper, materials & adaptive systems, materials/adaptive systems, computation.
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
doi https://doi.org/10.52842/conf.acadia.2018.336
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id acadia18_98
id acadia18_98
authors Fox, Michael; Schulitz, Marc; Gershfeld, Mikhail; Cohen, Marc
year 2018
title Full Integration: Closing the Gap on Technology Readiness
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 98-107
doi https://doi.org/10.52842/conf.acadia.2018.098
summary This paper discusses the authors’ experiences and lessons learned through designing and constructing small- and large-scale robotic prototypes and the fully integrated use of VR and AR for design. Also of focus here are the methodological tools utilized to implement this student-led research in an interdisciplinary educational environment, as well as the design explorations of Mars habitation systems. Through the systems engineering approach, students will generate ideas that may or may not make it to the final design development stage, but may potentially be valuable to future real exploration habitats and mission architectures. The final prototype allows an assessment of the focus parameters, which are the vessels’ transformation capacities and layout adaption. The design objective of this project is to examine strategies for commonality between an interplanetary vehicle (IPV) and a Mars surface habitat. The presented design proposals address this challenge to create a common habitation system in both habitats so that crew members will be familiar with the layout, function, and location throughout the expedition. The design tools operate at the intersection of architectural layout design, mechanics, and structural design, and use origami folding techniques and structural form-finding concepts to generate shell action rigidity. In addition, the project develops a strategy for mobility and transformation of the surface habitat prior to its transformed configuration. The value here lies in understanding lessons from this strategy for both the design process as well as efficiency and optimization in design as a model for terrestrial design.
keywords full paper, bim, flexible structures, performance + simulation, representation + perception, building technologies, vr/ar/mr
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
doi https://doi.org/10.52842/conf.acadia.2018.226
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_965715 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002