CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 431

_id caadria2018_049
id caadria2018_049
authors Xu, Tongda, Wang, Dinglu, Yang, Mingyan, You, Xiaohui and Huang, Weixin
year 2018
title An Evolving Built Environment Prototype - A Prototype of Adaptive Built Environment Interacting with Electroencephalogram Supported by Reinforcement Learning
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 207-215
doi https://doi.org/10.52842/conf.caadria.2018.2.207
summary This paper proposes an environment prototype learning from people's Electroencephalogram (EEG) feedback in real-time. Instead of the widely adopted supervised learning method, a recently published affordable reinforcement learning model (PPO) is adopted to avoid bias from designers and to base the interaction on the subject and intelligent agent rather than between the designer and subject. In this way, development of interaction method towards a specific target is substantially accelerated. The target of this prototype is to keep the subject's alpha wave stable or decline, which indicated a more calming state, by intelligent decision of illumination state according to subject's EEG. The result is promising, a decent trained model could be gained within 500,000 steps facing this mid-complex environment. The target of keeping the alpha wave of subjects on a low or stable level purely by decision from computer agents is successfully reached.
keywords Brain–computer interface; Reinforcement learning; Adaptive environment; Electroencephalogram; Mindfulness training
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2018_335
id ecaade2018_335
authors Seifert, Nils and Petzold, Frank
year 2018
title Architects & Algorithms - Developing Interactive Visualizations for Architectural Communication
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 361-370
doi https://doi.org/10.52842/conf.ecaade.2018.1.361
summary The paper presents the concept and results of a seminar that addresses the intersecting fields of architecture and urbanism, data and information visualization as well as information technology. In the first part of the paper, an introduction to the seminar topic and relevance in the context of architectural education and practice is given. Subsequently, the course concept, the learning contents and the corresponding learning objectives are presented. In the second part, selected student projects are shown as exemplary course results. In the conclusion, the results of the seminar for students, teachers and research implications are discussed. The overall aim of this publication is to draw on the experience gained in this field of education to offer starting points for others in developing similar teaching concepts and support for their implementation.
keywords Urban Planning; Programming; Information Design; Data Visualization; Smart City; Processing
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2018_1772
id sigradi2018_1772
authors Farias, Ana C. C; Paio, Alexandra
year 2018
title Technopolitics and participatory processes - Interactions between digital networks and streets in Lisbon
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1321-1327
summary This article presents a survey and analysis of the technopolitical devices created in projects of local initiatives carried out in Lisbon, within the scope of the Neighborhoods and Zones of Priority Intervention program, of the City Council. The methodology adopted is based on the reading of the projects, analysis of the technopolitics encountered and interviews with representatives of the entities that proposed them. In this way, it was possible to observe tendencies, potentialities and difficulties faced in the proposal and use of technopolitics in the scope of these projects, which allowed to conclude that the digital dimension has an important role in the reinforcement and expansion of an existing articulation in the territories, between partner entities and communities.
keywords Technopolitics; Lisbon; observatory; community-based action; digital technology
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
doi https://doi.org/10.52842/conf.acadia.2020.1.382
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2018_1619
id sigradi2018_1619
authors Agirbas, Asli
year 2018
title Creating Non-standard Spaces via 3D Modeling and Simulation: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1051-1058
summary Especially in the film industry, architectural spaces away from Euclidean geometry are brought to foreground. The best environment in which such spaces can be designed, is undoubtedly the 3D modeling environment. In this study, an experimental study was carried out on the creation of alternative spaces with undergraduate architectural students. Via using 3D modeling and various simulation techniques in the Maya software, students created spaces, which were away from the traditional architectural spaces. Thus, in addition to learning the 3D modeling software, architectural students learned to use animation and simulation as a part of design, not just as a presentation tool, and opening up new horizons for non-standard spaces was provided.
keywords 3D Modeling; Simulation; Animation; CAAD; Maya; Non-standard spaces
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201816406
id ijac201816406
authors As, Imdat; Siddharth Pal and Prithwish Basu
year 2018
title Artificial intelligence in architecture: Generating conceptual design via deep learning
source International Journal of Architectural Computing vol. 16 - no. 4, 306-327
summary Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph- based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.
keywords Architectural design, conceptual design, deep learning, artificial intelligence, generative design
series journal
email
last changed 2019/08/07 14:04

_id caadria2018_029
id caadria2018_029
authors Ayoub, Mohammed
year 2018
title Adaptive Façades:An Evaluation of Cellular Automata Controlled Dynamic Shading System Using New Hourly-Based Metrics
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 83-92
doi https://doi.org/10.52842/conf.caadria.2018.2.083
summary This research explores utilizing Cellular Automata patterns as climate-adaptive dynamic shading systems to mitigate the undesirable impacts by excessive solar penetration in cooling-dominant climates. The methodological procedure is realized through two main phases. The first evaluates all 256 Elementary Cellular Automata possible rules to elect the ones with good visual and random patterns, to ensure an equitable distribution of the natural daylight in internal spaces. Based on the newly developed hourly-based metrics, simulations are conducted in the second phase to evaluate the Cellular Automata controlled dynamic shadings performance, and formalize the adaptive façade variation logic that maximizes daylighting and minimizes energy demand.
keywords Adaptive Façade; Dynamic Shading; Cellular Automata; Hourly-Based Metric; Performance Evaluation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
doi https://doi.org/10.52842/conf.caadria.2018.2.185
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
doi https://doi.org/10.52842/conf.acadia.2018.176
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2018.1.401
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2018_1329
id sigradi2018_1329
authors Campos Fialho, Beatriz; A. Costa, Heliara; Logsdon, Louise; Minto Fabrício, Márcio
year 2018
title CAD and BIM tools in Teaching of Graphic Representation for Engineering
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 961-968
summary BIM technology has represented an advance and a break of the design process’ paradigm, impacting both academia and construction market. Reporting a didactic experience in the Civil Engineering graduation, this article aims to understand the teaching and learning process of graphic representation, by using CAD and BIM tools. The research included Literature Review and Empirical Study, whose data collection was based on the application of questionnaires, practical exercises and theoretical test with the students. As a contribution, we highline the complementary nature of the tools and the potentialities of BIM for teaching graphic representation.
keywords Graphic Representation; CAD System Education; CAE System Education. BIM
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_118
id caadria2018_118
authors Chen, Zi-Ru, Liao, Chien-Jung and Chu, Chih-Hsing
year 2018
title An Assembly Guidance System of Tou Kung Based on Augmented Reality
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 349-358
doi https://doi.org/10.52842/conf.caadria.2018.1.349
summary Tou kung represent Chinese architecture. Due to the difficulty of learning from ancient books, some develop 3D assembly models. Still, there are limits while using 2D images for assembly instructions. The purpose of this study is to explore whether the application of AR technology can guide the process of tou kung assembly and address the recognition gap between paper illustrations and the physical assembly process. The method is to observes the user's tou kung assembly behavior and performance. Then the study proposed an dynamic simulation AR guidance system to help people not only understand the structure, but also the culture behind to reach the goal of education promotion.
keywords Augmented Reality; Tou-Kung; assembly
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_056
id caadria2018_056
authors Chirkin, Artem, Pishniy, Maxim and Sender, Arina
year 2018
title Generilized Visibility-Based Design Evaluation Using GPU
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
doi https://doi.org/10.52842/conf.caadria.2018.2.483
summary Visibility plays an important role in perception and use of an urban design, and thus often becomes a target of design analysis. This work presents a fast method of evaluating various visibility-based design characteristics, such as isovists or insolation exploiting the GPU rendering pipeline and compute shaders. The proposed method employs a two-stage algorithm on each point of interest. First, it projects the visible space around a vantage point onto an equirectangular map. Second, it folds the map using a flexibly defined function into a single value that is associated with the vantage point. Being executed on a grid of points in a 3D scene, it can be visualized as a heat map or utilized by another algorithm for further design analysis. The developed system provides nearly real-time analysis tools for an early-stage design process to a broad audience via web services.
keywords design analysis; design evaluation; GPU; isovist; insolation
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
doi https://doi.org/10.52842/conf.caadria.2018.2.401
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
doi https://doi.org/10.52842/conf.caadria.2018.1.205
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_085
id caadria2018_085
authors Chung, Chia-Chun and Jeng, Tay-Sheng
year 2018
title Information Extraction Methodology by Web Scraping for Smart Cities - Using Machine Learning to Train Air Quality Monitor for Smart Cities
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-524
doi https://doi.org/10.52842/conf.caadria.2018.2.515
summary This paper presents an opportunistic sensing system for air quality monitoring to forecast the implicit factors of air pollution. Opportunistic sensing is performed by web scraping in the social network service to extract information. The data source for the air quality analysis combines two types of information: explicit and implicit information. The objective is to develop the information extraction methodology by web scraping for smart cities. The application development methodology has potential for solving real-world problems such as air pollution by data comparison between social activity observing and data collecting in sensor network.
keywords smart city; open data; web scraping; social media; machine learning
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_008
id caadria2018_008
authors Crolla, Kristof, Cheng, Paul Hung Hon, Chan, Ding Yuen Shan, Chan, Arthur Ngo Foon and Lau, Darwin
year 2018
title Inflatable Architecture Production with Cable-Driven Robots
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 9-18
doi https://doi.org/10.52842/conf.caadria.2018.1.009
summary This paper argues for alternative methods for the in-situ integration of robotics in architectural construction. Rather than promoting off-site pre-fabrication through industrial robot applications, it advocates for suspended, light-weight, cable-driven robots that allow flexible and safe onsite implementation. This paper uses the topic of large-scale inflatable architectural realisation as a study case to test the application of such a robot, here with a laser-cutter as end-effecter. This preliminary study covers the design, development, prototyping, and practical testing of an inherently scale-less cable-driven laser-cutter setup. This setup allows for the non-size specific cutting of inflatable structures' components which can be designed with common physics simulation engines. The developed robotic proof of concept forms the basis for several further and future study possibilities that merge the field of architectural design and implementation with mechanical and automation engineering.
keywords Cable-driven robots; In-situ robotic fabrication; Large-scale fabrication; Inflatable architecture; Cross-disciplinarily
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_399
id ecaade2018_399
authors Cutellic, Pierre
year 2018
title UCHRON - An Event-Based Generative Design Software Implementing Fast Discriminative Cognitive Responses from Visual ERP BCI
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 131-138
doi https://doi.org/10.52842/conf.ecaade.2018.2.131
summary This research aims at investigating BCI technologies in the broad scope of CAAD applications exploiting early visual cognition in computational design. More precisely, this paper will describe the investigation of key BCI and ML components for the implementation and development of a software supporting this research : Uchron. It will be organised as follows. Firstly, it will introduce the pursued interest and contribution that visual-ERP EEG based BCI application for Generative Design may provide through a synthetic review of precedents and BCI technology. Secondly, selected BCI components will be described and a methodology will be presented to provide an appropriate framework for a CAAD software approach. This section main focus is on the processing component of the BCI. It distinguishes two key aspects of discrimination and generation in its design and proposes a new model based on GAN for modulated adversarial design. Emphasis will be made on the explicit use of inference loops integrating fast human cognitive responses and its individual capitalisation through time in order to reflect towards the generation of design and architectural features.
keywords Human Computer Interaction; Neurodesign; Generative Design; Design Computing and Cognition; Machine Learning
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_292
id caadria2018_292
authors Eid Mohamed, Basem, ElKaftangui, Mohamed and Zureikat, Rana
year 2018
title {In}Formed Panels - Towards Rethinking the Precast Concrete Industry in the UAE
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 287-296
doi https://doi.org/10.52842/conf.caadria.2018.1.287
summary The convergence of digital design and fabrication technologies have offered architects and designers the means by which to develop customized architectural artifacts, ones that goes beyond the standards of "one size fits all". Such applications have been applied extensively in various architectural practices, and specifically in the realm of industrialized building production, given that they present a suitable model. Although unrecognized within standard precast concrete production, current research acknowledges the need for advanced computer applications for shifting the industry into a digitized process. This paper represent a critical phase of an ongoing research endeavor that aims at rethinking the precast concrete production in the UAE, and MENA region for housing typologies. The project explores possibilities of a new protocol that is focused from design to production, relying on performative design strategies, and possible optimized for large format 3D printing of concrete elements. The aim is to develop an integrated façade panels system that is tailored for design and production; an approach that goes beyond current industry practices.
keywords Precast Concrete; Industrialized Construction; Evolutionary Design; Optimization
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_863059 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002