CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2018_422
id ecaade2018_422
authors Ku, Kihong and Gurjar, Satpal
year 2018
title Prototyping Method for Complex-Shaped Textile Composite Panels - Developing a digitally controlled reconfigurable mold
doi https://doi.org/10.52842/conf.ecaade.2018.2.047
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 47-52
summary While textile composites offer a wide range of formal flexibilities, a primary concern is the cost and time of creating custom mold surfaces which are typically produced through subtractive digital fabrication techniques. Alternative methods such as adjustable molds are used in high-end sail-making, and architectural researchers have examined reconfigurable molds, fiber sandwich fabrication methods, and mold-free fiber reinforced polymer (FRP) fabrication processes. In this paper, we discuss the development of a digitally controlled mold system for complex-shaped textile composite panels, aiming to reduce the need for custom milled molds. Experimental research started with producing composite samples from computer-numerically-controlled (CNC) milled foam molds. Subsequently, a digitally controlled deformable mold prototype was developed which incorporates a digital interface through which the architect's surface geometry is entered, analyzed, and transferred. The digital geometry directly controls the position of vertical actuators which adjusts the mold surface. Results of this ongoing project outline a digital process for fabricating textile composite panels, and help to define key parameters of the adjustable mold system including material properties, mechanical controls of the mold surface, paneling considerations, and digital interface.
keywords textile composites; reconfigurable mold; deformable mold; fiber reinforced polymer; digital fabrication; Arduino
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2023_375
id sigradi2023_375
authors Consalter Diniz, Maria Luisa, Polverini Boeing, Lais, dos Santos Carvalho, Wendel and Bertola Duarte, Rovenir
year 2023
title Natural Language Processing, Sentiment Analysis, and Urban Studies: A Systematic Review
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1761–1772
summary This paper discusses the potential of using data from social media and location data platforms to create cartographies that enhance our understanding of urban dynamics. Natural Language Processing (NLP) and sentiment analysis are highlighted as essential tools for comprehending and categorizing this data. The study conducted a systematic review of NLP and sentiment analysis applications in urban studies, covering 27 peer-reviewed journals and conference papers published between 2018 and 2023. The research classified applications into six categories: urban livability, governance and management, user and landscape perception, land use and zoning, public health, and transportation and mobility. Most studies primarily relied on data from social media platforms like Twitter and location data sources such as Google Maps and Trip Advisor. Challenges include dealing with irrelevant or misleading information in publicly available data and limited accuracy when analyzing sentiments of non-English-speaking populations.
keywords Natural language processing, Sentiment analysis, Urban studies, Digital cartographies, Systematic review.
series SIGraDi
email
last changed 2024/03/08 14:09

_id caadria2018_287
id caadria2018_287
authors Herr, Christiane M., Lombardi, Davide and Galobardes, Isaac
year 2018
title Parametric Design of Sculptural Fibre Reinforced Concrete Facade Components
doi https://doi.org/10.52842/conf.caadria.2018.2.319
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 319-328
summary This paper presents the first stage of a study examining the digital design and fabrication of a parametrically defined sculptural concrete façade element employing fibre reinforced concrete. On the background of a literature review of related precedent studies, the paper extends the scope of previous studies by offering a detailed insight into the process of integrating architectural considerations with material properties of fibre reinforced concrete, detailed structural analysis and construction constraints. The paper offers technical details with a focus on material to similar on-going studies.
keywords parametric design; digital fabrication; digital prototyping; fibre reinforced concrete; prefabrication
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaaderis2018_116
id ecaaderis2018_116
authors Giannopoulou, Effimia, Montás Laracuente, Nelson Bernardo and Baquero, Pablo
year 2018
title Qualitative Study on two Kinetic System Simulations - Experiments Based on Shape Memory Material and Stepper Motors
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 95-102
keywords This investigation intends to compare two computational design experiments operating on two kinetic architecture (Zuk and Clark 1970) design application domains: Shape-memory material (SMM) activated grids and stepper-actuated (SA) responsive skins. In the first one, the goal was to build a standard way of simulating SMM, which can be used as actuators in the construction of kinetic structures and in the second, to simulate and construct a responsive skin according to human interaction using kinect and stepper motors. In both experiments, a similar generative workflow was employed, combining insights from materials and mechanical systems. The objective is to investigate kinetic performance, kinetic design methodology, simulation implementation and applications within the two separate design domains. The general hypothesis is that both experiments become design workflows in themselves as real-time, dynamic modeling systems. A qualitatively study of both sets of cases, is taking in count general, simulation and application aspects, using evaluation criteria including workflow, material quantity, data capture and mechanical properties.
series eCAADe
email
last changed 2018/05/29 14:33

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
doi https://doi.org/10.52842/conf.acadia.2018.434
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2018_303
id caadria2018_303
authors Song, Jae Yeol, Kim, Jin Sung, Kim, Hayan, Choi, Jungsik and Lee, Jin Kook
year 2018
title Approach to Capturing Design Requirements from the Existing Architectural Documents Using Natural Language Processing Technique
doi https://doi.org/10.52842/conf.caadria.2018.2.247
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 247-254
summary This paper describes an approach to utilizing natural language processing (NLP) to capture design requirements from the natural language-based architectural documents. In various design stage of the architectural process, there are several different kinds of documents describing requirements for buildings. Capturing the design requirements from those documents is based on extracting information of objects, their properties, and relations. Until recently, interpreting and extracting that information from documents are almost done by a manual process. To intelligently automate the conventional process, the computer has to understand the semantics of natural languages. In this regards, this paper suggests an approach to utilizing NLP for semantic analysis which enables the computer to understand the semantics of the given text data. The proposed approach has following steps: 1) extract noun words which mostly represent objects and property data in Korean Building Act; 2) analyze the semantic relations between words, using NLP and deep learning; 3) Based on domain database, translate the noun words in objects and properties data and find out their relations.
keywords NLP (Natural Language Processing); Deep learning; Design requirements; Korean Building Act; Semantic analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2018_172
id ecaade2018_172
authors Al-Douri, Firas
year 2018
title The Employment of Digital Simulation in the Planning Departments in US Cities - How does it affect design and decision-making processes?
doi https://doi.org/10.52842/conf.ecaade.2018.2.539
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 539-548
summary The increased interactivity of digital simulation tools has offered a wide range of opportunities that may provoke a paradigmatic shift in urban design practice. Yet, research results did not provide any clear evidence that such shift seems to exist. Further studies are required to examine the methods and impact of their usage on decision-making and design outcome. To that goal, this research uses the single-case study design that has been pursued in three phases: literature review, online survey, and semi-structured interviews. The results have shown inadequacies, inconsistency, and ineffectiveness of usage of the tools that are most appropriate to the design activities of each phase and thus a limited impact on critical areas of the decision-making. The impact of the tools' usage is found to be correlated with not only the extent of their usage, but also with a variety of procedural and substantive factors such as the plan methodology, extent of tool's usage, choice of the appropriate tool, and planners' skills and capabilities in using those tools.
keywords Urban Simulation ; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_176
id acadia18_176
authors Bidgoli, Ardavan; Veloso,Pedro
year 2018
title DeepCloud. The Application of a Data-driven, Generative Model in Design
doi https://doi.org/10.52842/conf.acadia.2018.176
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 176-185
summary Generative systems have a significant potential to synthesize innovative design alternatives. Still, most of the common systems that have been adopted in design require the designer to explicitly define the specifications of the procedures and in some cases the design space. In contrast, a generative system could potentially learn both aspects through processing a database of existing solutions without the supervision of the designer. To explore this possibility, we review recent advancements of generative models in machine learning and current applications of learning techniques in design. Then, we describe the development of a data-driven generative system titled DeepCloud. It combines an autoencoder architecture for point clouds with a web-based interface and analog input devices to provide an intuitive experience for data-driven generation of design alternatives. We delineate the implementation of two prototypes of DeepCloud, their contributions, and potentials for generative design.
keywords full paper, design tools software computing + gaming, ai & machine learning, generative design, autoencoders
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id lasg_whitepapers_2019_063
id lasg_whitepapers_2019_063
authors Börner, Katy; and Andreas Bueckle
year 2019
title Envisioning Intelligent Interactive Systems; Data Visualizations for Sentient Architecture
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.063 - 088
summary This paper presents data visualizations of an intelligent environment that were designed to serve the needs of two stakeholder groups: visitors wanting to understand how that environment operates, and developers interested in optimizing it. The visualizations presented here were designed for [Amatria], a sentient sculpture built by the Living Architecture Systems Group (LASG) at Indiana University Bloomington, IN, USA, in the spring of 2018. They are the result of an extended collaboration between LASG and the Cyberinfrastructure for Network Science Center (CNS) at Indiana University. We introduce [Amatria], review related work on the visualization of smart environments and sentient architectures, and explain how the Data Visualization Literacy Framework (DVL-FW) can be used to develop visualizations of intelligent interactive systems (IIS) for these two stakeholder groups.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
doi https://doi.org/10.52842/conf.caadria.2019.2.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2018_1329
id sigradi2018_1329
authors Campos Fialho, Beatriz; A. Costa, Heliara; Logsdon, Louise; Minto Fabrício, Márcio
year 2018
title CAD and BIM tools in Teaching of Graphic Representation for Engineering
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 961-968
summary BIM technology has represented an advance and a break of the design process’ paradigm, impacting both academia and construction market. Reporting a didactic experience in the Civil Engineering graduation, this article aims to understand the teaching and learning process of graphic representation, by using CAD and BIM tools. The research included Literature Review and Empirical Study, whose data collection was based on the application of questionnaires, practical exercises and theoretical test with the students. As a contribution, we highline the complementary nature of the tools and the potentialities of BIM for teaching graphic representation.
keywords Graphic Representation; CAD System Education; CAE System Education. BIM
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_399
id ecaade2018_399
authors Cutellic, Pierre
year 2018
title UCHRON - An Event-Based Generative Design Software Implementing Fast Discriminative Cognitive Responses from Visual ERP BCI
doi https://doi.org/10.52842/conf.ecaade.2018.2.131
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 131-138
summary This research aims at investigating BCI technologies in the broad scope of CAAD applications exploiting early visual cognition in computational design. More precisely, this paper will describe the investigation of key BCI and ML components for the implementation and development of a software supporting this research : Uchron. It will be organised as follows. Firstly, it will introduce the pursued interest and contribution that visual-ERP EEG based BCI application for Generative Design may provide through a synthetic review of precedents and BCI technology. Secondly, selected BCI components will be described and a methodology will be presented to provide an appropriate framework for a CAAD software approach. This section main focus is on the processing component of the BCI. It distinguishes two key aspects of discrimination and generation in its design and proposes a new model based on GAN for modulated adversarial design. Emphasis will be made on the explicit use of inference loops integrating fast human cognitive responses and its individual capitalisation through time in order to reflect towards the generation of design and architectural features.
keywords Human Computer Interaction; Neurodesign; Generative Design; Design Computing and Cognition; Machine Learning
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_010
id caadria2018_010
authors Han, Lu and Cardoso Llach, Daniel
year 2018
title Ludi: A Concurrent Physical and Digital Modeling Environment
doi https://doi.org/10.52842/conf.caadria.2018.1.515
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-523
summary This paper explores the potential of a concurrent physical and digital modeling environment. We describe a prototype for a novel design modeling interface where users can take advantage of the affordances of both physical and digital modeling environments, and work back and forth between the two. Using Processing, along with the Kinect depth sensor, the system uses depth data read from a physical modeling space to produce an enhanced digital representation in real time. Users can design by moving and stacking wooden blocks in a physical space, which is represented (and enhanced) digitally as a "voxel space," which can in turn be edited digitally. The result is a proof-of-concept concurrent physical and digital modeling environment combining design affordances specific to each media: the physical space offers tactile and embodied forms of design inter-action, and the digital space offers parametric editing capabilities, along with the capacity to view the modeling space from different perspectives, and perform basic analyses on designs. Following a brief review of experimental computational and tangible interaction design interfaces, the paper discusses the system's implementation, its limitations, and future steps.
keywords Computational Design; Processing; Concurrent Modeling Environment; Tangible Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2018_p02
id ecaade2018_p02
authors Kepczynska-Walczak, Anetta and Martens, Bob
year 2018
title Digital Heritage - Special Panel Session
doi https://doi.org/10.52842/conf.ecaade.2018.1.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-44
summary According to eCAADe's mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical approaches in the different schools and countries, can be regarded as a core activity. The current session follows up on the first Contextualised Digital Heritage Workshop (CDHW) held on the occasion of eCAADe 2016 in Oulu (D. di Mascio et.al.) This event was thought to represent the first of a series of future contextualized digital heritage workshops and hence, the name Oulu interchangeable with the name of any other city or place. The second CDHW took place in the framework of CAADRIA 2017 in Suzhou (D. di Mascio & M.A. Schnabel) and focussed on sharing and dissemination of heritage information and personal experiences, such as narratives.The primary objective for the 2018 digital heritage session is to engage participants in an active discussion, not the longer format presentation of prepared positions. The round table itself is limited to short opening statements so as to ensure time is allowed for viewpoints to be exchanged and for the conference attendees to join in on the issues discussed. The panel will review past practices with the potential for guiding future direction.
keywords Digital technology; Built heritage; Virtual archeology
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201816101
id ijac201816101
authors Nisztu, Maciejk and Pawe³ B. Myszkowsk
year 2018
title Usability of contemporary tools for the computational design of architectural objects: Review, features evaluation and reflection
source International Journal of Architectural Computing vol. 16 - no. 1, 58-84
summary This article is an overview focused on functionality and usability of selected contemporary approaches for the computational floor plan generation of architectural objects. This article describes current solutions for generative architectural design and focuses on their usability from the point of view of architectural design practice. Recent research papers and prototypes, as well as the most important tools (selected computer-aided design and BIM software) for generative design from the architectural perspective, are described. The functionalities and level of usability of present-day software and prototypes are described. In addition, the descriptive review of the research prototypes architectural design outcomes is present. Furthermore, the survey among active architects regarding the usage of computational tools in the professional practice and possible guidelines for the development of such tools are present. This article summarises with the conclusion about the current state of generative floor plan design tools, the lack of fully functional and developed commercial tools of this type on the market and future directions for the development of generative floor plans tools.
keywords Architectural design, case studies, computer-aided architectural design, optimisation in computer-aided architectural design, computer-aided architectural design applications
series journal
email
last changed 2019/08/07 14:03

_id sigradi2018_1269
id sigradi2018_1269
authors Noronha Pinto de Oliveira e Sousa, Marcela; Caffarena Celani, Maria Gabriela
year 2018
title Towards Urban Densification: Parametric Modeling of Possible Scenarios for Urban Mobility
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 415-422
summary This article presents a literature review on the relationship between urban design and travel demand, and systematically maps existing studies in generative, parametric and procedural urban modeling that have approached the subject. The methods used in these papers are discussed, and the computational tools described in them are analyzed to identify how they can be used to support the design process for retrofitting urban streets. The findings are used to identify what further developments are needed in order to allow for visualizing the impact of design decisions on modal share.
keywords Urban design; Parametric urbanism; Travel behavior; Built environment
series SIGRADI
email
last changed 2021/03/28 19:59

_id ecaadesigradi2019_474
id ecaadesigradi2019_474
authors Nunes de Vasconcelos, Guilherme, Malard, Maria Lucia, van Stralen, Mateus, Campomori, Maurício, Canavezzi de Abreu, Sandro, Lobosco, Tales, Flach Gomes, Isabella and Duarte Costa Lima, Lucas
year 2019
title Do we still need CAVEs?
doi https://doi.org/10.52842/conf.ecaade.2019.3.133
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 133-142
summary This paper discusses the relevance of CAVE systems in comparison with virtual and augmented reality head-mounted displays in terms of immersion experience, costs, maintenance, ease to use, interactivity, and social interaction. It is based on a comparative study of a systematic literature review comprising the works available at CumInCAD and IEEE databases in the period from 1998-2018, and empirical data from technical visits made to five CAVEs in Europe. The discussion seeks to cover the limits of each technology and questions the need for CAVEs nowadays.
keywords CAVE; Virtual Reality; head mounted display; Augmented reality
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaade2018_393
id ecaade2018_393
authors Serrano Salazar, Salvador, Carrasco Hortal, José, Morales Menárguez, Francesc and Gutiérrez Salazar, Juan Pablo
year 2018
title Cooperative Trees by Adding Inosculated and Discrete Definitions to a DLA Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.103
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 103-112
summary This paper presents a method to generate free-form branched structures from a small number of different constructive elements, based on the postulates of discrete or combinatorial design. The research is based on the study of fractal growth as a generator of complex tree-like structures, using references from other scientific approaches in which the possibilities of the DLA (diffusion-limited aggregation) model have been explored. The proposed method uses the Grasshopper visual programming language, and incorporates new topological strategies to improve the performance or robustness of the system through tree-tree (inosculation) and tree-soil (aerial roots) cooperations. The simulation demonstrates the effectiveness of the proposed method and its potential for the construction of structures with complex geometries from a discrete set of knots and bars and bioinspired strategies. The paper includes a review of the chosen design principles, the developed methodology and a recent physical test in Medellín (Colombia).
keywords DLA, discrete design, inosculation, branching structures, virtual-real models
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_880426 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002