CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 547

_id acadia18_394
id acadia18_394
authors Adel, Arash; Thoma, Andreas; Helmreich, Matthias; Gramazio, Fabio; Kohler, Matthias
year 2018
title Design of Robotically Fabricated Timber Frame Structures
doi https://doi.org/10.52842/conf.acadia.2018.394
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 394-403
summary This paper presents methods for designing nonstandard timber frame structures, which are enabled by cooperative multi-robotic fabrication at building-scale. In comparison to the current use of automated systems in the timber industry for the fabrication of plate-like timber frame components, this research relies on the ability of robotic arms to spatially assemble timber beams into bespoke timber frame modules. This paper investigates the following topics: 1) A suitable constructive system facilitating a just-in-time robotic fabrication process. 2) A set of assembly techniques enabling cooperative multi-robotic spatial assembly of bespoke timber frame modules, which rely on a man-machine collaborative scenario. 3) A computational design process, which integrates architectural requirements, fabrication constraints, and assembly logic. 4) Implementation of the research in the design and construction of a multi-story building, which validates the developed methods and highlights the architectural implications of this approach.
keywords full paper, fabrication & robotics, generative design, computation, timber architecture
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_389
id ecaade2018_389
authors Algeciras-Rodriguez, Jose
year 2018
title Stochastic Hybrids - From references to design options through Self-Organizing Maps methodology.
doi https://doi.org/10.52842/conf.ecaade.2018.1.119
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 119-128
summary This ongoing research aims to define a general assisted design method to offer non-trivial design options, where form is produced by merging characteristics from initial reference samples collection that serves as an input set. This project explores design processes laying on the use of non-linear procedures and experiments with Self-Organizing Map (SOM), as neural networks algorithms, to generate geometries. All processes are applied to a set of models representing classic sculpture, whose characteristics are encoded by the SOM process. The result of it is a set of new geometry resembling characteristics from the original references. This method produces hybrid forms that acquire characteristics from several input references. The resulting hybrid entities are intended to be non-trivial solutions to specific design situations, so far, at the stage of this research, mainly formal requirements.
keywords Self-Orgnizing Maps; Cognitive Space; Design Options; Form Finding; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_424
id acadia18_424
authors Bucklin, Oliver; Drexler, Hans; Krieg, Oliver David; Menges, Achim
year 2018
title Integrated Solid Timber. A multi-requisite system for the computational design,fabrication, and construction of versatile building envelopes
doi https://doi.org/10.52842/conf.acadia.2018.424
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 424-433
summary The paper presents the development of a building system made from solid timber that fulfils the requirements of modern building skins while expanding the design possibilities through innovation in computational design and digital fabrication. Multiple strategies are employed to develop a versatile construction system that generates structure, enclosure and insulation while enabling a broad design space for contemporary architectural expression. The basic construction unit augments the comparatively high insulation values of solid timber by cutting longitudinal slits into beams, generating air chambers that further inhibit thermal conductivity. These units are further enhanced through a joinery system that uses advanced parametric modeling and computerized control to augment traditional joinery techniques. Prototypes of the system are tested at a building component level with digital models and physical laboratory tests. It is further evaluated in a demonstrator building to test development and further refine design, fabrication and assembly methods. Results are integrated into proposals for new methods of implementation. The results of the research thus far demonstrate the validity of the strategy, and continuing research will improve its viability as a building system.
keywords full paper, materials and adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_187
id ecaade2018_187
authors Chatzivasileiadi, Aikaterini, Hosney Lila, Anas M., Lannon, Simon and Jabi, Wassim
year 2018
title The Effect of Reducing Geometry Complexity on Energy Simulation Results
doi https://doi.org/10.52842/conf.ecaade.2018.2.559
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 559-568
summary Accuracy and time are metrics inherently associated with the design process and the energy performance simulation of buildings. The accurate representation of the building is an essential requirement for energy analysis, which comes with the expense of time; however, this is in contrast with the need to minimise the simulation time in order to make it compatible with design times. This is a particularly interesting aspect in the case of complex geometries, which are often simplified for use in building energy performance simulation. The effects of this simplification on the accuracy of simulation results are not usually reported. This paper explored these effects through a systematic analysis of several test cases. The results indicate that the use of orthogonal prisms as simplified surrogates for buildings with complex shapes presents a worst-case scenario that should be avoided where possible. A significant reduction of geometry complexity by at least 50% can also be achieved with negligible effects on simulation results, while minimising the time requirements. Accuracy, however, deteriorates rapidly below a critical threshold.
keywords Building performance simulation; Energy analysis; Geometry simplification
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
doi https://doi.org/10.52842/conf.caadria.2018.1.205
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2018_1702
id sigradi2018_1702
authors Câmara Benevides, Caroline; Ribeiro Roquete, Suellen; Mourão Moura, Ana Clara; Romero Fonseca Motta, Silvio
year 2018
title Comparative Analysis of Geospatial Visualization Tools for Urban Zoning Planning
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 609-616
summary The collective management of urban environment is a challenging task. Although considering the individuals and their values helps to build environments that are closer to the user's expectations, the identification of these aspects is not an easy task. Considering the potential of exploring visualization tools to support public participation, this paper compares two different 3D tools based on parametric modeling. Reinforcing the relevancy of both methods in promoting the visualization through the process of regulating the urban landscape resulting from the urban parameters, this paper aims to evaluate their performances concerning time consumed, training requirements, results and applicability.
keywords 3D Modeling; Parametric Modeling; CityEngine; Grashopper3D; Visualization
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_329
id ecaade2018_329
authors De Luca, Francesco, Nejur, Andrei and Dogan, Timur
year 2018
title Facade-Floor-Cluster - Methodology for Determining Optimal Building Clusters for Solar Access and Floor Plan Layout in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2018.2.585
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 585-594
summary Daylight standards are one of the main factors for the shape and image of cities. With urbanization and ongoing densification of cities, new planning regulations are emerging in order to manage access to sun light. In Estonia a daylight standard defines the rights of light for existing buildings and the direct solar access requirement for new premises. The solar envelope method and environmental simulations to compute direct sun light hours on building façades can be used to design buildings that respect both daylight requirements. However, no existing tool integrates both methods in an easy to use manner. Further, the assessment of façade performance needs to be related to the design of interior layouts and of building clusters to be meaningful to architects. Hence, the present work presents a computational design workflow for the evaluation and optimisation of high density building clusters in urban environments in relation to direct solar access requirements and selected types of floor plans.
keywords Performance-driven Design; Urban Design; Direct Solar Access; Environmental Simulations and Evaluations; Parametric Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_178
id ecaade2018_178
authors Kroc, Tomasz and Walczak, Bartosz M.
year 2018
title GIS Technologies Implementation Based on The EU Directive Inspire - A case study of the Pabianice city
doi https://doi.org/10.52842/conf.ecaade.2018.1.489
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 489-496
summary This paper presents the experience of implementating GIS technologies at a county town urban planning department. The necessity to implement GIS technology is partly dictated by the requirements of the INSPIRE Directive. The discussed case provides valuable information about the problems and challenges that cities have in Poland, while performing their obligations under the directive. The process of preparing the necessary geographical database corresponding to existing planning documents raises many legal and technical problems. The presented case illustrates the whole process associated with the preparation of digitization and publication of urban plans. At the same time, it is worth to see the numerous benefits that the city obtains after publishing GIS data. Attention should also be paid to the further development of GIS and the chances of their use, especially in urban centers.
keywords INSPIRE; GIS technologies implementation; urban planning; sharing geographic dates
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_180
id caadria2018_180
authors Mekawy, Mohammed and Petzold, Frank
year 2018
title BIM-Based Model Checking in the Early Design Phases of Precast Concrete Structures
doi https://doi.org/10.52842/conf.caadria.2018.2.071
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 71-80
summary Designers often carry out their work in the early design stages with disregard to prefabrication requirements, leading to poorly thought out design decisions in terms of precast concrete planning efficiency. If precast expertise could be integrated early into design schemes, this would improve design efficiency, reduce errors and misalignments, and save time at every design iteration. The objective is not to replace precast domain experts, but to help architects make better-informed design decisions. This research is part of a wider investigation that aims to develop a rule-based expert system to support an automated review of precast concrete requirements in BIM models in the early design stages, proactively providing feedback for design decision support. This specific paper summarizes the theoretical part of the research and proposes a way to formalize precast expert knowledge as rule-sets in a tabular form that can be later programmed and integrated in a BIM platform for automated checking of BIM models.
keywords Precast Concrete; Rule-based checking; BIM-based model checking; Expert system; Decision tables
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201816304
id ijac201816304
authors Miao, Yufan; Reinhard Koenig, Katja Knecht, Kateryna Konieva, Peter Buš and Mei-Chih Chang
year 2018
title Computational urban design prototyping: Interactive planning synthesis methods—a case study in Cape Town
source International Journal of Architectural Computing vol. 16 - no. 3, 212-226
summary This article is motivated by the fact that in Cape Town, South Africa, approximately 7.5 million people live in informal settlements and focuses on potential upgrading strategies for such sites. To this end, we developed a computational method for rapid urban design prototyping. The corresponding planning tool generates urban layouts including street network, blocks, parcels and buildings based on an urban designer’s specific requirements. It can be used to scale and replicate a developed urban planning concept to fit different sites. To facilitate the layout generation process computationally, we developed a new data structure to represent street networks, land parcellation, and the relationship between the two. We also introduced a nested parcellation strategy to reduce the number of irregular shapes generated due to algorithmic limitations. Network analysis methods are applied to control the distribution of buildings in the communities so that preferred neighborhood relationships can be considered in the design process. Finally, we demonstrate how to compare designs based on various urban analysis measures and discuss the limitations that arise when we apply our method in practice, especially when dealing with more complex urban design scenarios.
keywords Procedural modeling, spatial synthesis, generative design, urban planning
series journal
email
last changed 2019/08/07 14:03

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

_id sigradi2018_1486
id sigradi2018_1486
authors Peroza Piaia, Luana; Cybis Pereira, Alice Theresinha; Secchi, Carla Cristina
year 2018
title Furniture kits and physical model as a tool for visualization of the minimum residential spaces according to the anthropometric ergonomics
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 86-91
summary This paper presents the results obtained through the development of furniture kits and physical model, aiming to compare the minimum design requirements described in the anthropometric ergonomics, current housing program and construction law. The qualitative approach through bibliographical and documentary revision allowed the choice of technical representation, using BIM software for design and subsequent digital prototyping. It concludes that the creation of environments according to the minimum requirements does not allow the use of space according to its purpose, and by making use of furniture kits, it is possible to obtain experiments and better understanding.
keywords Physical model; Housing of social interest; Rapid prototyping; Minimal spaces; Anthropometric ergonomics
series SIGRADI
email
last changed 2021/03/28 19:59

_id sigradi2021_226
id sigradi2021_226
authors Pincheira, Milena, Alarcón, Catalina, Rivera, María Isabel and Martínez, Andrea
year 2021
title Daylighting and the Elderly: A Study of Daylight Accessibility and Envelope Retrofit in Southern Chile's Senior Home
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1333–1344
summary In the next 25 years, the elderly population will increase on average to 65 thousand people annually in Chile (INE, 2018). Their independent living is jeopardized partially for diminished visual capacity that difficult spatial perception. Although light does not correct vision impairment, adequate light levels can respond to the needs of older people as preventing visual errors. This study evaluates daylighting availability in an assisting living residence in a southern city in Chile. A quantitative approach resulted in the identification of envelope-retrofit strategies that allow achieving recommended levels of natural lighting, particularly in shared spaces where residents spend most of the day. The results show that it would be possible to achieve better light availability, as it also allows for a better understanding of the contributions of the building envelope. Finally, the study outlines recommendations for future retrofits that meet requirements for visual comfort for a growing senior population.
keywords Daylighting Accessibility, Senior Home, Daylighting Strategies, Visual Comfort, Computational Simulation.
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2018_264
id caadria2018_264
authors Ren, Hui, Han, Yunsong and Sun, Cheng
year 2018
title transDATA: A Data Recording and Exchanging Plug-in for Architectural Computational Design
doi https://doi.org/10.52842/conf.caadria.2018.2.051
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 51-60
summary Building form has a profound influence on the green performance of buildings. And the modeling tools are one of the factors can affect the building forms which play an important role in the design process. Nowadays, parametric modeling tools become popular in the architectural area. However, the functions of data processing and data comparison cannot meet the current modeling data processing requirements which need to be improved urgently. This paper developed the transDATA, which is a plugin based on python to realize the data exchanging and data visualization functions between Grasshopper, Excel and the Figure of python. This plugin allows architects to compare the history design parameters of the building and help architects to select the most ideal scheme efficiently.
keywords TransDATA; Data processing; Data visualization; Computational design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_361
id ecaade2018_361
authors Schneider, Sven, Kuliga, Saskia, Weiser, René, Kammler, Olaf and Fuchkina, Ekaterina
year 2018
title VREVAL - A BIM-based Framework for User-centered Evaluation of Complex Buildings in Virtual Environments
doi https://doi.org/10.52842/conf.ecaade.2018.2.833
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 833-842
summary The design of buildings requires architects to anticipate how their future users will experience and behave in them. In order to do this objectively and systematically user studies in Virtual Environments (VEs) are a valuable method. In this paper, we present a framework for setting up, conducting and analysing user studies in VEs. The framework is integrated in the architectural design process by using BIM as a common modeling and visualisation platform. In order to define the user studies simple and flexible for the individual purposes we followed a modular concept. Modules thereby refer to different kinds of user study methods. Currently we developed three modules (Wayfinding, Spatial Experience and Qualitative Annotations), each having their individual requirements regarding their setup, interaction method and visualisation of results. In the course of a architectural design studio, students applied this framework to evaluate their building designs from a user perspective.
keywords Pre-Occupancy Evaluation; Virtual Reality; User-centered Design; Building Information Modeling; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_303
id caadria2018_303
authors Song, Jae Yeol, Kim, Jin Sung, Kim, Hayan, Choi, Jungsik and Lee, Jin Kook
year 2018
title Approach to Capturing Design Requirements from the Existing Architectural Documents Using Natural Language Processing Technique
doi https://doi.org/10.52842/conf.caadria.2018.2.247
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 247-254
summary This paper describes an approach to utilizing natural language processing (NLP) to capture design requirements from the natural language-based architectural documents. In various design stage of the architectural process, there are several different kinds of documents describing requirements for buildings. Capturing the design requirements from those documents is based on extracting information of objects, their properties, and relations. Until recently, interpreting and extracting that information from documents are almost done by a manual process. To intelligently automate the conventional process, the computer has to understand the semantics of natural languages. In this regards, this paper suggests an approach to utilizing NLP for semantic analysis which enables the computer to understand the semantics of the given text data. The proposed approach has following steps: 1) extract noun words which mostly represent objects and property data in Korean Building Act; 2) analyze the semantic relations between words, using NLP and deep learning; 3) Based on domain database, translate the noun words in objects and properties data and find out their relations.
keywords NLP (Natural Language Processing); Deep learning; Design requirements; Korean Building Act; Semantic analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
doi https://doi.org/10.52842/conf.caadria.2018.1.245
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_322
id caadria2018_322
authors Lu, Hangxin, Gu, Jiaxi, Li, Jin, Lu, Yao, Müller, Johannes, Wei, Wenwen and Schmitt, Gerhard
year 2018
title Evaluating Urban Design Ideas from Citizens from Crowdsourcing and Participatory Design
doi https://doi.org/10.52842/conf.caadria.2018.2.297
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 297-306
summary Participatory planning aims at engaging multiple stakeholders including citizens in various stages of planning projects. Adopting participatory design approach in the early stage of planning project facilitates the ideation process of citizens. We have implemented a participatory design study during the 2017 Beijing Design Week and have conducted an interactive design project called "Design your perfect Dashilar: You Place it!". Participants including local residents and visitors were asked to redesign the Yangmeizhu street, a historical street located in Dashilar area by rearranging the buildings of residential, commercial, administration, and cultural functionalities. Apart from using digital design tools, questionnaires, interviews, and sensor network were applied to collect personal preferences data. Computational approaches were used to extract features from designs and personal preferences. In this paper, we illustrate the implementation of the participatory design and the possible applications by combining with crowdsourcing. Participatory design data and citizens profiles with personal preferences were analysed and their correlations were computed. By using crowdsourcing and participatory design, this study shows that the digitalization of participatory design with data science perspective can indicate the implicit requirements, needs and design ideas of citizens.
keywords Participatory design; Crowdsourcing; Human computation; Citizen Design Science; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_284
id caadria2018_284
authors Mühlhaus, Michael, Jenney, Sarah Louise and Petzold, Frank
year 2018
title Take a Look Through My Eyes: An Augmented Reality Planning Communication System
doi https://doi.org/10.52842/conf.caadria.2018.1.379
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 379-388
summary Participation and communication in urban planning, visualisation, spatial perception, and motivation through gamification are discussed and system requirements derived. An augmented reality multi-client communication prototype is described improving transparency and utilising local expertise in planning processes. The selection, processing and visualisation of planning data takes individual stakeholders knowledge and skill levels, cultural backgrounds, and interests into account to facilitate understanding through moderation and the ability to change perspective.
keywords Augmented Reality; Gameification; Communication; Public Participation; Visualisation
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_168086 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002