CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 623

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ijac201816301
id ijac201816301
authors Rasmussen, Troels A. and Timothy Merritt
year 2018
title ProjecTables: Augmented CNC tools for sustainable creative practices
source International Journal of Architectural Computing vol. 16 - no. 3, 227-242
summary Computer numerical control (CNC) cutting machines have become essential tools for designers and architects enabling rapid prototyping, model building, and production of high-quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for computer numerical control cutting that would have been previously thrown away, at the same time supporting esthetic choices related to wood grain, avoiding surface blemishes, and other relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper understanding of current work practices and sustainability issues with computer numerical control cutting machines and identified useful features for interactive packing to reduce waste while supporting esthetic concerns for exhibition quality design projects.
keywords Sustainability, fabrication, computer numerical control cutting machines, CNC cutting machines, visual augmentation, digital tools
series journal
email
last changed 2019/08/07 14:03

_id acadia18_82
id acadia18_82
authors Sun, Chengyu; Zheng, Zhaohua; Sun, Tongyu
year 2018
title Hybrid Fabrication. A free-form building process with high on-site flexibility and acceptable accumulative error
doi https://doi.org/10.52842/conf.acadia.2018.082
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 82-87
summary Although digital fabrication has a booming development in the building industry, especially in freeform building, its further application in onsite operations is still limited because of the huge flexibility required in programming. On the contrary, traditional manual fabrication onsite deals perfectly with problems that always accompany fatal accumulative errors in freeform building. This study explores a hybrid fabrication paradigm to take advantage of both in an onsite freeform building project, in which there is a cycling human–computer interactive process consisting of manual operation and computer guidance in real time. A Hololens-Kinect system in a framework of typical project camera systems is used in the demonstration. When human builders perceive, decide, and operate the irregular foam bricks in a complex onsite environment, the computer keeps updating the current form through 3D scanning and prompting the position and orientation of the next brick through augmented display. From a starting vault, the computer always fine tunes its control surface according to the gradually installed bricks and keeps following a catenary formula. Thus, the hybrid fabrication actually benefits from the flexibility based on human judgment and operation, and an acceptable level of accumulative error can be handled through computer guidance concerning the structural performance and formal accuracy.
keywords work in progress, vr/ar/mr, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2023_362
id caadria2023_362
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldabous, Rahaf, Aldaboos, Sarah and Lopez Rodriguez, Alvaro
year 2023
title Fabrication of Complex Clay Structures Through an Augmented Reality Assisted Platform
doi https://doi.org/10.52842/conf.caadria.2023.1.413
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 413–422
summary The relationship between clay manufacturing and architectural design has a long trajectory that has been explored since the early 2000s. From a 3D printing or assembly perspective, using clay in combination with automated processes in architecture to achieve computational design solutions is well established. (Yuan, Leach & Menges, 2018). Craft-based clay art, however, still lacks effective computational design integration. With the improvement of Augmented Reality (AR) technologies (Driscoll et al., 2017) and the appearance of digital platforms, new opportunities to integrate clay manufacturing and computational design have emerged. The concept of digitally transferring crafting skills, using holographic guidance and machine learning, could make clay crafting accessible to more workers while creating the potential to share and exchange digital designs via an open-source manufacturing platform. In this context, this research project explores the potential of integrating computational design and clay crafting using AR. Moreover, it introduces a platform that enables AR guidance and the digital transfer of fabrication skills, allowing even amateur users with no prior making experience to produce complex clay components.
keywords Computer vision, Distributed manufacturing, Augmented craftsmanship, Augmented reality, Real-time modification, Hololens
series CAADRIA
email
last changed 2023/06/15 23:14

_id ijac201816405
id ijac201816405
authors Poustinch, Ebrahimi
year 2018
title Subtractive digital fabrication with actual robot and virtual material using a MARI platform
source International Journal of Architectural Computing vol. 16 - no. 4, 281-294
summary This article presents a project-based research study using a new hybrid augmented reality platform called the Mixed Architectural Robotic Interface. Using the Mixed Architectural Robotic Interface as a mixture of different software and hardware platforms, ranging from design/modeling software, simulation engine, and an augmented reality application, the designer would be able to evaluate the possibilities/limitations of the fabrication, in real time and as part of the design. This method advances designer’s understanding of the fabrication equipment as an input for the design decision-making process. This article demonstrates the potential of a virtual/actual hybridized platform as a new medium to design, simulate, and evaluate, in order to enhance the digital design and fabrication. Introducing the possibility of real-time communication between the digital design software and the fabrication platforms as well as the augmented reality simulation of the fabrication process, the Mixed Architectural Robotic Interface enables designers to test the fabrication process with the fabrication equipment in the early stages of the design process. This method makes it possible to move beyond the traditional limitations of machines pursuing “un-expected creativity,” without any additional time or cost for the process. Using the virtual material for fabrication, the Mixed Architectural Robotic Interface reduces the time and cost of having multiple iterations and encourages the hands-on experimental use of the fabrication tool (in this article robotic/computer numeric control milling) not only as a production tool but also as a design study tool.
keywords Design, robotics, augmented reality, digital fabrication, computer numeric control milling, virtual material
series journal
email
last changed 2019/08/07 14:04

_id sigradi2018_1348
id sigradi2018_1348
authors Bertuzzi, Juan Pablo; Chiarella, Mauro
year 2018
title Gamification of Educational Environments through Virtual Reality Platforms
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 975-979
summary This paper proposes the experimentation of new information and communication technologies through the development of an experimental and interactive virtual reality application, where educational content and game mechanics are incorporated, in order to generate interactivity within a digital 3D space and promote academic exchange in an innovative way. This project aims to the exploration of an open 3D digital environment, where the modeling is inspired by some sector of the physical space of the authors’ university, compatible for the incorporation of smart objects, avatars and a dialogue/activities system that deals with several educational topics.
keywords Avatar; Gamification; Hybrid worlds; Techno-politics; Virtual reality
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_88
id acadia18_88
authors Jahn, Gwyllim; Newnham, Cameron; Beanland, Matthew
year 2018
title Making in Mixed Reality. Holographic design, fabrication, assembly and analysis of woven steel structures
doi https://doi.org/10.52842/conf.acadia.2018.088
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 88-97
summary The construction industry’s reliance on two-dimensional documentation results in inefficiency, inconsistency, waste, human error, and increased cost, and limits architectural experimentation with novel form, structure, material or fabrication approaches. We describe a software platform that enables designers to create interactive holographic instructions that translate design models into intelligent processes rather than static drawings. A prototypical project to design and construct a pavilion from bent mild steel tube illustrates the use of this software to develop applications assisting with the design, fabrication, assembly and analysis of the structure. We further demonstrate that fabrication within mixed reality environments can enable unskilled construction teams to assemble complex structures in short time frames and with minimal errors, and outline possibilities for further improvements.
keywords full paper, vr/ar/mr, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_381
id ecaade2018_381
authors Jenney, Sarah Louise, Mühlhaus, Michael, Seifert, Nils, Petzold, Frank and Wiethoff, Alexander
year 2018
title Escaping Flatlands - Interdisciplinary Collaborative Prototyping Solutions to Current Architectural Topics
doi https://doi.org/10.52842/conf.ecaade.2018.1.323
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 323-332
summary The paper describes the interdisciplinary course, Escaping Flatlands, focusing on improving communication between students, who were either from the field of architecture or media informatics and human-computer interaction. There were two underlying themes. The first, the integration and augmentation of digital media and haptic models, escaping the flatland of classic architectural media such as paper or screens. The second theme, expert-laymen communication in public participation, was addressed in the contextual theme and content of the course task, the communication between students of different fields, and the presentation of robust working prototypes at an architectural exhibition. Students, in groups of four, developed three interactive architectural models enhanced with digital content. The course resulted in a number of benefits to students, the chairs, and implications for research. It also led to further collabourations between the two universities involved, including cross-over Bachelor and Master Thesis.
keywords tangible interfaces; human-computer interaction; smart city; public participation; model making; augmented reality
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
doi https://doi.org/10.52842/conf.acadia.2018.312
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_276
id acadia18_276
authors Bilotti, Jeremy; Norman, Bennett; Rosenwasser, David; Leo Liu, Jingyang; Sabin, Jenny
year 2018
title Robosense 2.0. Robotic sensing and architectural ceramic fabrication
doi https://doi.org/10.52842/conf.acadia.2018.276
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 276-285
summary Robosense 2.0: Robotic Sensing and Architectural Ceramic Fabrication demonstrates a generative design process based on collaboration between designers, robotic tools, advanced software, and nuanced material behavior. The project employs fabrication tools which are typically used in highly precise and predetermined applications, but uniquely thematizes the unpredictable aspects of these processes as applied to architectural component design. By integrating responsive sensing systems, this paper demonstrates real-time feedback loops which consider the spontaneous agency and intuition of the architect (or craftsperson) rather than the execution of static or predetermined designs. This paper includes new developments in robotics software for architectural design applications, ceramic-deposition 3D printing, sensing systems, materially-driven pattern design, and techniques with roots in the arts and crafts. Considering the increasing accessibility and advancement of 3D printing and robotic technologies, this project seeks to challenge the erasure of materiality: when mistakes or accidents caused by inconsistencies in natural material are avoided or intentionally hidden. Instead, the incorporation of material and user-input data yields designs which are imbued with more nuanced traces of making. This paper suggests the potential for architects and craftspeople to maintain a more direct and active relationship with the production of their designs.
keywords full paper, fabrication & robotics, robotic production, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2018_270
id ecaade2018_270
authors Gönenç Sorguç, Arzu, Kruºa Yemiºco?lu, Müge and Özgenel, Ça?lar F?rat
year 2018
title Multiverse of a Form - Snowflake to Shelder
doi https://doi.org/10.52842/conf.ecaade.2018.2.411
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 411-416
summary The almost seamless integration of computation, fabrication and immersion technologies in architecture not only constitutes potentials for exploring design instances through multiple media but also changes design paradigm from form-formation to form-formation-exploration. In this sense, multiverse of design as proposed in this study and integration of various design technologies from virtual to real aims to advance higher order thinking skills and a more exclusive design exploration in computational design process. Undoubtedly, the multiverse of design cannot be handled without emerging technologies temptingly easing fabrication in both physical and virtual realms. On the other hand, such technologies can easily be deceptive in regard with scale, choice of material, details and etc.Therefore, how and which modes of exploration (physical or virtual) should be integrated into the design process is critical. "Exploration of design" in the realm of new technologies does not only connote a formal exploration of design and its performance but it also becomes a way learning/thinking of design enhancing critical thinking and constructivist learning. Within the scope of this study, the multiverse of a form(ation) is explained throughly and examplified through snowflake pavilion which is issued to 4th year and graduate students in the scope of an elective studio course. Snowflake pavillon comprises physical, virtual and mapped reality as a triskelion for immersive experience for visitors.
keywords Virtual Reality; Augmented Reality; Physical Reality; Fabrication Technologies; Multiverse of Design
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia20_164p
id acadia20_164p
authors Lange, Christian; Ratoi, Lidia; Co Lim, Dominic; Hu, Jason; Baker, David M.; Yu, Vriko; Thompson, Phil
year 2020
title Reformative Coral Habitats
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 164-169
summary Coral reefs are some of the most diverse ecologies in the marine world. They are the habitat to tens of thousands of different marine species. However, these wildlife environments are endangered across the globe. Recent research estimates that around 75 percent of the remaining coral reefs are currently under threat. In 2018 after a devastating storm, Hong Kong lost around 80% of its existing corals. Consequently, a team consisting of marine biologists and architects at The University of Hong Kong has developed a series of performative structures that have been deployed in the city's waters in July 2020, intending to aid new coral growth over the coming years. The project was commissioned by the Agriculture, Fisheries, and Conservation Department (AFCD) and is part of an ongoing active management measure for coral restoration in Hoi Ha Wan Marine Park in Hong Kong. The following objectives were defined as part of the design and fabrication research of the project. To develop a design strategy that builds on the concept of biomimicry to allow for complex spaces to occur that would provide attributes against the detachment of the inserted coral fragment, hence could enhance a diverse marine life specific to the context of the cities water conditions. To generate an efficient printing path that accommodates the specific morphological design criteria and ensures structural integrity and the functional aspects of the design. To develop an efficient fabrication process with a DIW 3D printing methodology that considers warping, shrinkage, and cracking in the clay material. The research team developed a method that combined an algorithmic design approach for the design of different geometries with a digital additive manufacturing process utilizing robotic 3D clay printing. The overall fabrication strategy for the complex and large pieces sought to ensure structural longevity, optimize production time, and tackle the involved double-sided printing method. Overall, 128 tiles were printed, covering roughly 40sqm of the seabed.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id caadria2018_302
id caadria2018_302
authors Lee, Alric, Tei, Hirokazu and Hotta, Kensuke
year 2018
title Body-Borne Assistive Robots for Human-Dependent Precision Construction - The Compensation of Human Imprecision in Navigating 3-Dimensional Space with a Stand-Alone, Adaptive Robotic System
doi https://doi.org/10.52842/conf.caadria.2018.1.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary The rapid growth of complex contemporary architecture design, contributed by the advance in parametric CAD/CAM software, is accompanied by challenges in the production process; it demands both highly trained workers and technical equipments. This paper reviews current technologies in robotics-aided construction and wearable computers for generic purposes, and proposes the design of a robotic device for construction guidance. It guides the user, the worker, through the assembly process of precision modular constructions, by providing procedural mechanical or haptic assistance in the 3-dimensional positioning of building components. The device is designed to be wearable, portable, and operable as a completely stand-alone system that requires no external infrastructure. A prototype of the device is tested with a mock-up masonry construction experiment, the result of which is reported in this paper, along with discussion for future improvement and application opportunities within the context of highly developed, condensed Japanese urban environments. A greater objective of this paper is to bridge current studies in Human-Computer Interaction (HCI) and digital fabrication in architecture and promote the potentials of human workers in future construction scenes.
keywords digital fabrication; human-computer interaction; 3d positioning; wearable robotics; guided construction
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_215
id ecaade2018_215
authors Mohite, Ashish, Kochneva, Mariia and Kotnik, Toni
year 2018
title Material Agency in CAM of Undesignable Textural Effects - The study of correlation between material properties and textural formation engendered by experimentation with G-code of 3D printer
doi https://doi.org/10.52842/conf.ecaade.2018.2.293
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 293-300
summary This paper presents intermediate results of an experimental research directed towards development of a method to use additive manufacturing technology as a generative agent in architectural design process. The primary technique is to variate speed of material deposition of a 3D printer in order to produce undetermined textural effects. These effects demonstrate local variation of material distribution, which is treated as a consequence of interaction between machining parameters and material properties. Current stage of inquiry is concerned with studying material agency by using two different materials as variables in the same experimental setup. The results suggest potential benefits for mass-customized fabrication and deeper understanding of how different materials can be employed in the same manufacturing system to achieve a range of effective behaviors.
keywords digital fabrication; digital craft
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2018_437
id ecaade2018_437
authors Mostafavi, Sina, Bier, Henriette, N. Kemper, Benjamin and L. Fischer, Daniel
year 2018
title Robotic Materialization of Architectural Hybridity - Modelling, Computation and Robotic Production of Multi-materiality
doi https://doi.org/10.52842/conf.ecaade.2018.2.301
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 301-308
summary Considering both architectural and constructional aspects of the built environment, hybridity or multi-materiality is essential to generate functional habitable spaces. Buildings consist of subsystems that each require different and sometimes conflicting material attributes and behaviours. In this context, expanding the solution space for material properties in architectural applications can be achieved through the integration of innovative design computation and production methods. With this focus, the paper presents prototyping processes and frames a discourse on robotic materialisation of architectural hybridity, ranging from micro or material to macro or component scales. The paper discusses three case studies, each with a specific focus on digital modelling, computation and robotic production of hybrid systems. The conclusion outlines how robotic fabrication of architectural multi-materiality redefines, informs and extends methods of design computation and materialisation.
keywords Hybridity; Multimode robotic production; Robotic 3D Printing; Robotic subtractive manufacturing; Material computation; Multi-materiality
series eCAADe
email
last changed 2022/06/07 07:58

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2018_188
id ecaade2018_188
authors Coppens, Adrien, Mens, Tom and Gallas, Mohamed-Anis
year 2018
title Parametric Modelling Within Immersive Environments - Building a Bridge Between Existing Tools and Virtual Reality Headsets
doi https://doi.org/10.52842/conf.ecaade.2018.2.711
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 711-716
summary Even though architectural modelling radically evolved over the course of its history, the current integration of Augmented Reality (AR) and Virtual Reality (VR) components in the corresponding design tasks is mostly limited to enhancing visualisation. Little to none of these tools attempt to tackle the challenge of modelling within immersive environments, that calls for new input modalities in order to move away from the traditional mouse and keyboard combination. In fact, relying on 2D devices for 3D manipulations does not seem to be effective as it does not offer the same degrees of freedom. We therefore present a solution that brings VR modelling capabilities to Grasshopper, a popular parametric design tool. Together with its associated proof-of-concept application, our extension offers a glimpse at new perspectives in that field. By taking advantage of them, one can edit geometries with real-time feedback on the generated models, without ever leaving the virtual environment. The distinctive characteristics of VR applications provide a range of benefits without obstructing design activities. The designer can indeed experience the architectural models at full scale from a realistic point-of-view and truly feels immersed right next to them.
keywords Computer-aided Design; Parametric modelling; Virtual Reality; Architectural modelling; Human-Computer Interaction
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_881464 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002