CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaaderis2018_119
id ecaaderis2018_119
authors Georgiou, Odysseas
year 2018
title The Oval - a complex geometry BIM case study
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 141-150
keywords This paper documents the steps followed to design and construct an oval shaped, high rise structure in Limassol Cyprus. The author presents the developed computational framework which was purposely built to support multiple levels and disciplines of design, construction and digital fabrication leading to a successful delivery of a complex geometry project within time and budget. A fully informed model involving multi-disciplinary data ranging from its conception to its completion establishes a sustainable paradigm for the construction industry, mainly because of its single source of control as opposed to other precedents involving multiple models and information.
series eCAADe
email
last changed 2018/05/29 14:33

_id sigradi2018_1312
id sigradi2018_1312
authors Lima, Fábio
year 2018
title About (relatively) common operations in digital architectures
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 31-36
summary Many different types of algorithms have been associated to gain complex shapes. They give rise to a large set of unusual forms, through calculations based on computational geometries, self-organizing systems, rule-based systems, and optimization, often still assembled in morphogenesis principles. Many of these discoveries mimic physical, chemical, and even behavioral principles at the edge of this code-translated knowledge. Thus, any new form, the result of this exploratory perspective, can mean some progress. If the understanding of specific algorithmic characteristics has validity (for precise programming), generic concepts are also important for simplifying procedures and presenting general concepts of the result.
keywords Digital architecture; Computational geometry; Visual expression; Syntax generalities
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
doi https://doi.org/10.52842/conf.caadria.2023.2.231
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

_id acadia18_414
id acadia18_414
authors Marcus, Adam; Ikeda, Margaret; Jones, Evan; Metcalf, Taylor; Oliver, John; Hammerstrom, Kamille; Gossard, Daniel
year 2018
title Buoyant Ecologies Float Lab. Optimized upside-down benthos for sea level rise adaptation
doi https://doi.org/10.52842/conf.acadia.2018.414
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 414-423
summary This paper describes the Buoyant Ecologies project, an ongoing research collaboration between architects, marine ecologists, and manufacturers focused on developing integrated architectural, ecological, and material responses to climate change and sea level rise. The research employs techniques of design computation and robotic fabrication to develop an approach to coastal resilience that is rooted in material performance as it relates to marine habitats. The project explores the design and production of highly performative fiber-reinforced polymer substrates that interact productively with the underwater ecosystem to promote multi-scalar habitats for invertebrate animals, encouraging ecological diversity and serving as wave-attenuating structures that mitigate coastal erosion. In this regard, the research leverages computational workflows of modeling, simulation, and fabrication to interface between human and nonhuman species in a way that benefits the broader ecosystem. The paper discusses an iterative prototyping process that has led to the design and construction of the Float Lab, a larger-scale prototype of a floating breakwater.
keywords full paper, materials & adaptive systems, performance + simulation, digital fabrication, collaboration
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id acadia18_108
id acadia18_108
authors Sanchez, Jose
year 2018
title Platforms for Architecture: Imperatives and Opportunities of Designing Online Networks for Design
doi https://doi.org/10.52842/conf.acadia.2018.108
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 108-117
summary The rise of platforms such as Facebook, YouTube, and Uber, initially celebrated as part of a disruptive new era of the internet, has slowly been reassessed as a problematic and unregulated form of twenty-first-century info-capitalism that contributes to inequality, mistrust, and user polarization. The internet has become a place for content creation, not only consumption, and the content freely created by the network of users has defined a self-organizing system of ad-hoc audiences following echo chambers organized through artificial intelligence, which amplifies previously identified trends. While a large portion of the content created by users seems to be aimed at personal forms of entertainment, a few remarkable projects, such as Wikipedia, have allowed hundreds of users to contribute to a collective goal. While we can observe that the platform model has appeared in diverse disciplines, allowing the creation of content from news articles to music, we have not seen the emergence of a robust design platform intended to proliferate and advance the discipline of architecture.

This paper makes the case that video game technology and its audiences have reached a state of technical capability that could allow for architectural platforms to emerge, one in which players could learn, create, and share architectural designs. Such a platform comes with a series of ethical imperatives, questions of value proposition, and liabilities, as well as a high potential to communicate and proliferate architectural knowledge and know-how. Common’hood, currently under development, will be used as a case study to engage the development of an ethical architectural platform that develops a proposition towards authorship, ownership, and collective engagement.

keywords full paper, platforms, capitalism, network, video game, combinatorics, information theory, entropy, co-ops, platform cooperativism, privacy, encryption
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2023_10
id ecaade2023_10
authors Sepúlveda, Abel, Eslamirad, Nasim and De Luca, Francesco
year 2023
title Machine Learning Approach versus Prediction Formulas to Design Healthy Dwellings in a Cold Climate
doi https://doi.org/10.52842/conf.ecaade.2023.2.359
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 359–368
summary This paper presents a study about the prediction accuracy of daylight provision and overheating levels in dwellings when considering different methods (machine learning vs prediction formulas), training, and validation data sets. An existing high-rise building located in Tallinn, Estonia was considered to compare the best ML predictive method with novel prediction formulas. The quantification of daylight provision was conducted according to the European daylight standard EN 17037:2018 (based on minimum Daylight Factor (minDF)) and overheating level in terms of the degree-hour (DH) metric included in local regulations. The features included in the dataset are the minDF and DH values related to different combinations of design parameters: window-to-floor ratio, level of obstruction, g-value, and visible transmittance of the glazing system. Different training and validation data sets were obtained from a main data set of 5120 minDF values and 40960 DH values obtained through simulation with Radiance and EnergyPlus, respectively. For each combination of training and validation dataset, the accuracy of the ML model was quantified and compared with the accuracy of the prediction formulas. According to our results, the ML model could provide more accurate minDF/DH predictions than by using the prediction formulas for the same design parameters. However, the amount of room combinations needed to train the machine-learning model is larger than for the calibration of the prediction formulas. The paper discuss in detail the method to use in practice, depending on time and accuracy concerns.
keywords Optimization, Daylight, Thermal Comfort, Overheating, Machine Learning, Predictive Model, Dwellings, Cold Climates
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2020_445
id ecaade2020_445
authors Spiegelhalter, Thomas, Andia, Alfredo, Levente, Juhasz and Namuduri, Srikanth
year 2020
title Part 1: The Integrated Decision Support System - Generative and synthetic biological design imaginations for the Miami bay area
doi https://doi.org/10.52842/conf.ecaade.2020.2.011
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 11-20
summary In less than 150 years our carbon society transformed the planet. Today more than 50% of ecologies in the world are determined by unsustainable industrialization processes. The latest IPCC reports show that we are quickly arriving at points of no return in the warming of our planet. We cannot afford to continue in the same direction, we need a new imagination. As part of an E.U.-US funded $1.9 million research project we have been working on multiple projects for the future of the Miami islands since 2018:1. We developed a generative GIS-BIM based Python API for mapping and optimization of carbon-neutral design workflows. It includes genetic design combinatorics with intuitive graphical Dynamo-Python-Grasshopper programming with experimental design results. 2. We worked on a series of design research for the Miami Bay that envisions islands, living shorelines, programmable soils, and infrastructures that grow by themselves using synthetic biology.
keywords Automated Workflows, Synthetic Biology, Artificial Intelligence, Architecture, Sea-level Rise
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_370
id ecaade2018_370
authors Abdelmohsen, Sherif, Massoud, Passaint, El-Dabaa, Rana, Ibrahim, Aly and Mokbel, Tasbeh
year 2018
title A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins
doi https://doi.org/10.52842/conf.ecaade.2018.2.253
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 253-262
summary Low-cost programmable materials such as wood have been utilized to replace mechanical actuators of adaptive architectural skins. Although research investigated ways to understand the hygroscopic response of wood to variations in humidity levels, there are still no clear methods developed to track and analyze such response. This paper introduces a computational method to analyze, track and store the hygroscopic response of wood through image analysis and continuous tracking of angular measurements in relation to time. This is done through a computational closed loop that links the smart material interface (SMI) representing hygroscopic response with a digital and tangible interface comprising a Flex sensor, Arduino kit, and FireFly plugin. Results show no significant difference between the proposed sensing mechanism and conventional image analysis tracking systems. Using the described method, acquiring real-time data can be utilized to develop learning mechanisms and predict the controlled motion of programmable material for adaptive architectural skins.
keywords Hygroscopic properties of wood; Adaptive architecture; Programmable materials; Real-time tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia18_394
id acadia18_394
authors Adel, Arash; Thoma, Andreas; Helmreich, Matthias; Gramazio, Fabio; Kohler, Matthias
year 2018
title Design of Robotically Fabricated Timber Frame Structures
doi https://doi.org/10.52842/conf.acadia.2018.394
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 394-403
summary This paper presents methods for designing nonstandard timber frame structures, which are enabled by cooperative multi-robotic fabrication at building-scale. In comparison to the current use of automated systems in the timber industry for the fabrication of plate-like timber frame components, this research relies on the ability of robotic arms to spatially assemble timber beams into bespoke timber frame modules. This paper investigates the following topics: 1) A suitable constructive system facilitating a just-in-time robotic fabrication process. 2) A set of assembly techniques enabling cooperative multi-robotic spatial assembly of bespoke timber frame modules, which rely on a man-machine collaborative scenario. 3) A computational design process, which integrates architectural requirements, fabrication constraints, and assembly logic. 4) Implementation of the research in the design and construction of a multi-story building, which validates the developed methods and highlights the architectural implications of this approach.
keywords full paper, fabrication & robotics, generative design, computation, timber architecture
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1619
id sigradi2018_1619
authors Agirbas, Asli
year 2018
title Creating Non-standard Spaces via 3D Modeling and Simulation: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1051-1058
summary Especially in the film industry, architectural spaces away from Euclidean geometry are brought to foreground. The best environment in which such spaces can be designed, is undoubtedly the 3D modeling environment. In this study, an experimental study was carried out on the creation of alternative spaces with undergraduate architectural students. Via using 3D modeling and various simulation techniques in the Maya software, students created spaces, which were away from the traditional architectural spaces. Thus, in addition to learning the 3D modeling software, architectural students learned to use animation and simulation as a part of design, not just as a presentation tool, and opening up new horizons for non-standard spaces was provided.
keywords 3D Modeling; Simulation; Animation; CAAD; Maya; Non-standard spaces
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1628
id sigradi2018_1628
authors Agirbas, Asli
year 2018
title The Use of Multi-Software in Undergraduate Architectural Design Studio Education: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1059-1064
summary In the architectural design process, instead of using the computer programs effectively, the ability of choosing the most suitable program for the purpose takes place. However, different programs used in the design process serve different purposes. Therefore, the use of more than one program throughout the project design process arises. Every day the number of programs used increases rapidly. Hence, the designers find difficult to adapt this speed. The same applies to the students of architectural design studio course. Therefore, in this study with undergraduate architecture students, a pilot study focusing on the use of multi-software was conducted within the scope of architectural design studio. The process and outputs were evaluated.
keywords Use of multi-software; Contextual design; Architectural design education; CAAD
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia22pr_124
id acadia22pr_124
authors Ago, Viola; Tursack, Hans
year 2022
title Understorey - A Pavilion in Parts
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 124-129.
summary In the summer of 2018, our collaboration was awarded a University Design Fellowship from the Exhibit Columbus organization to design, fabricate, and build a large pavilion in Columbus, Indiana as part of a biannual contemporary architecture exhibition. Our proposal for the competition was a pavilion that would double as an ecological education center. Our inspiration for this program was triggered in part by our reading of Jane Bennett’s materialist philosophy outlined in her book Vibrant Matter (2009). Through Bennett’s lens, our design rendered our site’s context as an animate field, replete with pre-existing material composites that we wanted to celebrate through a series of displays, information boards, and artificial lighting. In this, the installation would feature samples of local plants, minerals, and rocks, indigenous to Southern Indiana.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
doi https://doi.org/10.52842/conf.acadia.2018.216
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1508
id sigradi2018_1508
authors Akta?, Begüm; Birgül Çolako?lu, M.
year 2018
title Systematic approach to design builds for freeform façade: AFA Cultural Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 176-182
summary The design and construction of the complex, irregularly shaped, and curvilinear building forms are also known as freeform architecture, have gained an interest form architects and engineers. This paper presents how freeform façade designs are defined with its curvilinear geometric characteristics and the systematic approach that is used to design and implement them. The proposed method incorporates product design and integral façade construction approach at AFA Cultural Center freeform façade implementation. Therefore, the paper aims to improve the viability of the proposed method and decreasing the gap between the other disciplines and architects in a systematic way without losing the creativity of the architects.
keywords  Parametric modeling; Systematic approach; Design thinking; System thinking; Freeform façade design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_172
id ecaade2018_172
authors Al-Douri, Firas
year 2018
title The Employment of Digital Simulation in the Planning Departments in US Cities - How does it affect design and decision-making processes?
doi https://doi.org/10.52842/conf.ecaade.2018.2.539
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 539-548
summary The increased interactivity of digital simulation tools has offered a wide range of opportunities that may provoke a paradigmatic shift in urban design practice. Yet, research results did not provide any clear evidence that such shift seems to exist. Further studies are required to examine the methods and impact of their usage on decision-making and design outcome. To that goal, this research uses the single-case study design that has been pursued in three phases: literature review, online survey, and semi-structured interviews. The results have shown inadequacies, inconsistency, and ineffectiveness of usage of the tools that are most appropriate to the design activities of each phase and thus a limited impact on critical areas of the decision-making. The impact of the tools' usage is found to be correlated with not only the extent of their usage, but also with a variety of procedural and substantive factors such as the plan methodology, extent of tool's usage, choice of the appropriate tool, and planners' skills and capabilities in using those tools.
keywords Urban Simulation ; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201816103
id ijac201816103
authors Alani, Mostafa W.
year 2018
title Algorithmic investigation of the actual and virtual design space of historic hexagonal-based Islamic patterns
source International Journal of Architectural Computing vol. 16 - no. 1, 34-57
summary This research challenges the long-standing paradigm that considers compositional analysis to be the key to researching historical Islamic geometric patterns. Adopting a mathematical description shows that the historical focus on existing forms has left the relevant structural similarities between historical Islamic geometric patterns understudied. The research focused on the hexagonal-based Islamic geometric patterns and found that historical designs correlate to each other beyond just the formal dimension and that deep, morphological connections exist in the structures of historical singularities. Using historical evidence, this article identifies these connections and presents a categorization system that groups designs together based on their “morphogenetic” characteristics.
keywords Islamic geometric patterns, morphology, computations, digital design, algorithmic thinking
series journal
email
last changed 2019/08/07 14:03

_id sigradi2018_1277
id sigradi2018_1277
authors Alani, Mostafa
year 2018
title Heritage at Stake: Computational Design Processes for Rescuing Mosul’s Architectural Identity
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 165-169
summary A generative algorithm for exploring the virtual design space of historic houses in the city of Mosul is presented. The method aims to progressively engage the spatial organization of traditional houses through investigating existing examples.
keywords Traditional Mosul houses; Generative design; Shape grammar; Computation
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_96102 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002