CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 14 of 14

_id caadria2018_121
id caadria2018_121
authors Wit, Andrew John
year 2018
title Cloudmagnet, A CFRP Framework for Flexible Architectures
doi https://doi.org/10.52842/conf.caadria.2018.1.049
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 49-58
summary To examine CFRP's viability within architectural practice, this paper explores new possibilities and methodologies for the materials integration into the design and production processes. Through the lens of the /One Day House/ initiative and its recent subproject /cloudMAGNET/, this paper explores and evaluates new typologies of formwork and winding techniques for CFRP based structures derived from tensile modeling and CFD analysis. Through examinations in cored and sacrificial coreless winding, this paper outlines new formal, structural, adaptive and production possibilities afforded by the integration of CFRP into the architectural workflow.
keywords additive manufacturing; composites; carbon fiber; form finding; analog / digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
doi https://doi.org/10.52842/conf.acadia.2018.366
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1330
id sigradi2018_1330
authors Calijuri Hamra, José Eduardo
year 2018
title Horizontal dialogues and open data: the communication spaces of bottom-up urbanism
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1204-1211
summary The process of overcoming the digital divide has led to the formation of common interest groups. Network communication has become not only a mean, but also a conditioning for the horizontal structure of groups that are also dedicated to transforming urban spaces. Known as processes of bottom-up urbanism, these groups add virtual layers to urban space, and acting in a cybrid way they make inseparable the actions that occur on the virtual or material environment. This research is dedicated to understanding the dynamics of communication in a Facebook group created in one of these bottom-up urbanism processes.
keywords Bottom-up urbanism; Network society; Facebook; Communication process
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1492
id sigradi2018_1492
authors de Oliveira Junior, Jair Antonio; Hunold Lara, Arthur; Moretti Meirelles, Célia Regina
year 2018
title A Shelter in extreme environments: Prototyping of the riverine house in the Amazon
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 661-667
summary This article aims to contribute to the debate in the production of lightweight architectural structures, focusing on the dwelling, as well as design processes in extreme areas, resulting in the understanding of their formation processes. The report of the process of prototyping and BIM modeling of a floating riverfront housing, Solimões floodplain area, the city of Manacapuru, Amazonas in Brazil. In the context of the shelter, vernacular, what would be the most appropriate design processes for the complexity of social and environmental parameters, traditional technological resources in counterpart to the processes of the Digital Age, as a hybrid process, proposing mediation between traditional and scientific knowledge.
keywords Environment; BIM; Prototyping; Housing; Amazon
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_344
id ecaade2018_344
authors El-Gewely, Noor, Wong, Christopher, Tayefi, Lili, Markopoulou, Areti, Chronis, Angelos and Dubor, Alexandre
year 2018
title Programming Material Intelligence Using Food Waste Deposition to Trigger Automatic Three-Dimensional Formation Response in Bioplastics
doi https://doi.org/10.52842/conf.ecaade.2018.2.271
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 271-278
summary Bioplastics are by their very nature parametric materials, programmable through the selection of constituent components and the ratios in which they appear, and as such present significant potential as architectural building materials for reasons beyond sustainability and biodegradability. This paper presents a system through which rigid three-dimensional doubly curved hyperbolic paraboloid shapes are automatically formed from two-dimensional sheet casts by harnessing the inherent flexibility and expressiveness of bioplastics. The system uses a gelatin-based bioplastic supplemented with granular organic matter from food waste in conjunction with a split-frame casting system that enables the self-formation of three-dimensional geometries by directing the force of the bioplastic's uniform contraction as it dries. By adjusting the food waste added to the bioplastic, its properties can be tuned according to formal and performative needs; here, dehydrated granulated orange peel and dehydrated spent espresso-ground coffee are used both to impart their inherent characteristics and also to influence the degree of curvature of the resulting bioplastic surfaces. Multi-material casts incorporating both orange peel bioplastic and coffee grounds bioplastic are shown to exert a greater influence over the degree of curvature than either bioplastic alone, and skeletonized panels are shown to exhibit the same behavior as their solid counterparts. Potential developments of the technology so as to gain greater control of the curvature performance, particularly in the direction of computer-controlled additive manufacturing, are considered, as is the potential of application in architectural scale.
keywords Bioplastics; Composites; Fabrication; Materials
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_270
id ecaade2018_270
authors Gönenç Sorguç, Arzu, Kruºa Yemiºco?lu, Müge and Özgenel, Ça?lar F?rat
year 2018
title Multiverse of a Form - Snowflake to Shelder
doi https://doi.org/10.52842/conf.ecaade.2018.2.411
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 411-416
summary The almost seamless integration of computation, fabrication and immersion technologies in architecture not only constitutes potentials for exploring design instances through multiple media but also changes design paradigm from form-formation to form-formation-exploration. In this sense, multiverse of design as proposed in this study and integration of various design technologies from virtual to real aims to advance higher order thinking skills and a more exclusive design exploration in computational design process. Undoubtedly, the multiverse of design cannot be handled without emerging technologies temptingly easing fabrication in both physical and virtual realms. On the other hand, such technologies can easily be deceptive in regard with scale, choice of material, details and etc.Therefore, how and which modes of exploration (physical or virtual) should be integrated into the design process is critical. "Exploration of design" in the realm of new technologies does not only connote a formal exploration of design and its performance but it also becomes a way learning/thinking of design enhancing critical thinking and constructivist learning. Within the scope of this study, the multiverse of a form(ation) is explained throughly and examplified through snowflake pavilion which is issued to 4th year and graduate students in the scope of an elective studio course. Snowflake pavillon comprises physical, virtual and mapped reality as a triskelion for immersive experience for visitors.
keywords Virtual Reality; Augmented Reality; Physical Reality; Fabrication Technologies; Multiverse of Design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaaderis2018_106
id ecaaderis2018_106
authors Kourniatis, Nikolaos, Christidi, Nikoletta, Fakiri, Ioanna, Tsoumpri, Dimitra, Tsoukalas, Nikolaos and Karras, Evaggelos
year 2018
title The Geometrical Structure of new Architectural Object - The role of meta-mechanics of Holography in its formation
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 29-38
keywords In recent years there has been a gradually increasing interest in the terms on which the design and geometrical representation of the architectural object is based. ?he true challenge lies in the development of a methodology or mechanism which, having as its starting point the traditional object geometrical representation practices, will allow for a combination of new technologies towards creating new visual messages. In this research, the process of putting together a new architectural object, the digital hologram, will be seen as one such mechanism. The new views and strategies on space are open to treating spatial constructions, as a restructuring of the structures that could bring about changes for more favorable conditions for the representation of the architectural form. Thus, the strategies of architectural pioneering are judged by their ability to develop new procedures that are capable of reversing.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_276
id ecaade2018_276
authors Kruºa Yemiºcio?lu, Müge, Gönenç Sorguç, Arzu and Özgenel, Ça?lar F?rat
year 2018
title Crystal Formations and Symmetry in the Search of Patterns in Architecture
doi https://doi.org/10.52842/conf.ecaade.2018.2.121
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 121-128
summary Nature is always full of patterns inspiring all the disciplines and especially architecture in many ways. Currently, with the advances in technology and growing interest towards nature-driven studies, retrieving information from nature has a new connotation in scales and dimensions including both living and non-living beings. In this study, it is aimed to explore the scales of nature from Nano to Macro and a holistic approach is embraced to cope with the complexity of nature and architecture. To understand these complexities, patterns in different forms and scales serve as valuable tools to decode and recode information from one domain to another through locating the order and how patterns exist in different and changing environments with respect to forces and the urge of the existence of the being.This research focuses on the behavior of crystal formation which can be observed both in biotic and abiotic nature to understand the order generating the patterns in nature and its adaptation into a different and changing environment. This information of crystallization has great potential for architecture in terms of spatial structures, new materials and introducing a novel lattice for freeform structures. In this study, the potentials, limits and possible contributions of crystal formation are stated for architecture in the search of symmetry and patterns.
keywords nature-driven; computational design; crystal formation; symmetry; pattern
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_213
id ecaade2018_213
authors Lohse, Theresa, Fujii, Ryuta and Werner, Liss C.
year 2018
title Multi-Dimensional Interface Based Spatial Adaption - A Prototype For A Multi-Sensory User Interface Employing Elastic Materials
doi https://doi.org/10.52842/conf.ecaade.2018.2.169
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 169-176
summary Patten and Ishii (2000) discovered that people are employing more versatile strategies for spatial distribution when using a tangible user interface (TUI) as opposed to a graphics user interface (GUI) (Patten & Ishii, 2000). Besides, the generated information outputs of conventional two-dimensional interacting screens are currently almost entirely addressing the visual and acoustic senses but lacking in other sensory stimuli - such as haptic, body equilibrium and sense of gravity. With the experiment described here, the multi-dimensionality of both the input on the interface and the output of the human interaction will be challenged. This paper aims to introduce a method to a real world versatile three-dimensional interface actuating a simulated spatial environment that substantiates the more unconventional sensory perception mentioned above. A physical prototype using an Arduino will be assembled to test the feasibility of the structure.
keywords spatial formation; virtual reality; tangible user interface; body equilibrium; physical computing
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2018_215
id ecaade2018_215
authors Mohite, Ashish, Kochneva, Mariia and Kotnik, Toni
year 2018
title Material Agency in CAM of Undesignable Textural Effects - The study of correlation between material properties and textural formation engendered by experimentation with G-code of 3D printer
doi https://doi.org/10.52842/conf.ecaade.2018.2.293
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 293-300
summary This paper presents intermediate results of an experimental research directed towards development of a method to use additive manufacturing technology as a generative agent in architectural design process. The primary technique is to variate speed of material deposition of a 3D printer in order to produce undetermined textural effects. These effects demonstrate local variation of material distribution, which is treated as a consequence of interaction between machining parameters and material properties. Current stage of inquiry is concerned with studying material agency by using two different materials as variables in the same experimental setup. The results suggest potential benefits for mass-customized fabrication and deeper understanding of how different materials can be employed in the same manufacturing system to achieve a range of effective behaviors.
keywords digital fabrication; digital craft
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2018_070
id caadria2018_070
authors Pandjaitan, Poltak
year 2018
title Architectonics of Crystal Space
doi https://doi.org/10.52842/conf.caadria.2018.1.183
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 183-192
summary The basic research project addresses the question of spatiality in architecture and how to define space by geometrically mediating between spatialities. Based on interdisciplinary explorations of crystal structures and their specific constitutions, spatial paradigms are examined and implemented in the algebraic framework of crystals. The goal of the ongoing research is not to resemble and mimic these emergent crystal arrangements. It is only about the general principle of these formation processes particularly with regard to aperiodic quasicrystals. Through the purposive abstraction and translation of spatialities combined with the notion of crystals as a code like structure, it is possible to scrutinize the meaning of space in order to create space for new architectonical articulations.
keywords crystal; quasicrystal; lattice; aperiodic; architectonics
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

_id sigradi2018_1787
id sigradi2018_1787
authors Pereira Jr., Clorisval
year 2018
title Speculative cartography and the formation of public interest issues
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1333-1339
summary This work discusses how locative media and the democratization of geoprocessing technologies have reconfigured our experience with the urban space, opening up new territories for the construction of the public. It also discusses perspectives and challenges that speculative practices with locative media bring to disciplines such as design, architecture and engineering, and to the production of more sustainable ways of life. For that matter, this work presents some experiments with locative media and digital cartographies that aim to give visibility to our social relation with the urban space and to support processes of sense-making about issues of public interest.
keywords Locative media; Critical cartography; Social cartography; Speculative design
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia18_250
id acadia18_250
authors Seibold, Zach; Grinham, Jonathan; Geletina, Olga; Ahanotu, Onyemaechi; Sayegh, Allen; Weaver, James; Bechthold, Martin
year 2018
title Fluid Equilibrium: Material Computation in Ferrofluidic Castings
doi https://doi.org/10.52842/conf.acadia.2018.250
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 250-259
summary We present a computationally-based manufacturing process that allows for variable pattern casting through the use of ferrofluid – a mixture of suspended magnetic nanoparticles in a carrier liquid. The capacity of ferrofluid to form intricate spike and labyrinthine packing structures from ferrohydrodynamic instabilities is well recognized in industry and popular science. In this paper we employ these instabilities as a mold for the direct casting of rigid materials with complex periodic features. Furthermore, using a bitmap-based computational workflow and an array of high-strength neodymium magnets with linear staging, we demonstrate the ability to program the macro-scale pattern formation by modulating the magnetic field density within a single cast. Using this approach, it is possible to program specific patterns in the resulting cast tiles at both the micro- and macro-scale and thus generate tiled arrays with predictable halftone-like image features. We demonstrate the efficacy of this approach for a variety of materials typically used in the architecture, engineering, and construction industries (AEC) including epoxys, ceramics, and cements.
keywords full paper, materials & adaptive systems, digital fabrication, digital materials, physics
series ACADIA
type paper
email
last changed 2022/06/07 08:00

No more hits.

HOMELOGIN (you are user _anon_744794 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002