CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 625

_id ecaadesigradi2019_370
id ecaadesigradi2019_370
authors Sperling, David, Vizioli, Simone Helena Tanoue, Botasso, Gabriel Braulio, Tiberti, Mateus Segnini, Santana, Eduardo Felipe Zambom and Sígolo, Brianda de Oliveira Ordonho
year 2019
title Crossing Timelines - Main research topics in the histories of eCAADe and SIGraDi
doi https://doi.org/10.52842/conf.ecaade.2019.1.407
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 407-416
summary Being in tune with the joint eCAADe and SIGraDi conference, this paper systematizes and analyzes data related to the set of papers presented in the history of the conferences of both societies. Which paths traced from eCAADe and SIGraDi brought us to the "architecture in the age of the fourth industrial revolution"? This paper describes a bibliometric study focused on eCCADe and SIGraDi papers from 2003 to 2018 retrieved from CumInCad by using an open source software developed by the team for this research. The most used keywords and most cited authors, cross-citations between societies and time series about this data were synthesized, recovering part of the histories of these societies. Some similarities and differences between them are pointed out allowing to understand their past for better drawing their future.
keywords CAAD; History; Bibliometrics; Cumincad; eCAADe; SIGraDi
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_425
id ecaadesigradi2019_425
authors Betti, Giovanni, Aziz, Saqib and Ron, Gili
year 2019
title Pop Up Factory : Collaborative Design in Mixed Rality - Interactive live installation for the makeCity festival, 2018 Berlin
doi https://doi.org/10.52842/conf.ecaade.2019.3.115
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 115-124
summary This paper examines a novel, integrated and collaborative approach to design and fabrication, enabled through Mixed Reality. In a bespoke fabrication process, the design is controlled and altered by users in holographic space, through a custom, multi-modal interface. Users input is live-streamed and channeled to 3D modelling environment,on-demand robotic fabrication and AR-guided assembly. The Holographic Interface is aimed at promoting man-machine collaboration. A bespoke pipeline translates hand gestures and audio into CAD and numeric fabrication. This enables non-professional participants engage with a plethora of novel technology. The feasibility of Mixed Reality for architectural workflow was tested through an interactive installation for the makeCity Berlin 2018 festival. Participants experienced with on-demand design, fabrication an AR-guided assembly. This article will discuss the technical measures taken as well as the potential in using Holographic Interfaces for collaborative design and on-site fabrication.Please write your abstract here by clicking this paragraph.
keywords Holographic Interface; Augmented Reality; Multimodal Interface; Collaborative Design; Robotic Fabrication; On-Site Fabrication
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_459
id ecaadesigradi2019_459
authors Bourdakis, Vassilis and Tsangrassoulis, Aris
year 2019
title Dynamic Façade Design Studio - From sketches to microcontrollers
doi https://doi.org/10.52842/conf.ecaade.2019.2.725
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 725-730
summary The paper presents the outcome of two semesters running a dynamic façade design studio (2014 and 2018) to 3rd and 4th year undergraduates, using computational design, simulation and visualization tools in designing environmentally activated building envelopes. The paper discusses the problems faced by the students and the teaching team throughout the design process and finally suggests ways of integrating microcontrollers as a teaching tool enabling students to comprehend the logic, complexities and overall mechanics of responsive environmental design.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_398
id ecaadesigradi2019_398
authors Fink, Theresa and Koenig, Reinhard
year 2019
title Integrated Parametric Urban Design in Grasshopper / Rhinoceros 3D - Demonstrated on a Master Plan in Vienna
doi https://doi.org/10.52842/conf.ecaade.2019.3.313
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 313-322
summary By 2050 an estimated 70 percent of the world's population will live in megacities with more than 10 million citizens (Renner 2018). This growth calls for new target-oriented, interdisciplinary methods in urban planning and design in cities to meet sustainable development targets. In response, this paper exemplifies an integrated urban design process on a master plan project in Vienna. The objective is to investigate the potential towards a holistic, digital, urban design process aimed at the development of a practical methodology for future designs. The presented urban design process includes analyses and simulation tools within Rhinoceros 3D and its plug-in Grasshopper as quality-enhancing mediums that facilitate the creative approaches in the course of the project. The increase in efficiency and variety of design variants shows a promising future for the practical suitability of this approach.
keywords urban design; parametric modeling; urban simulation; design evaluation; environmental performance
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaadesigradi2019_471
id ecaadesigradi2019_471
authors Güzelci, Orkan Zeynel, Alaçam, Sema and Güzelci, Handan
year 2019
title Trend Topics and Changing Concepts of Computational Design in the Last 16 Years - A content analysis
doi https://doi.org/10.52842/conf.ecaade.2019.1.423
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 423-430
summary This study argues that analysis of written content might be helpful to provide clues at a certain extent on the future directions of current research areas and the emergence of new study areas. In the scope of the study, the International Journal of Architectural Computing (IJAC) which has been a scientific platform covering many pioneer publications on education research in computer-aided architectural design (CAAD) field was selected as source content. Although the size of the source domain is limited, the analysis of abstracts and titles of 439 articles published in IJAC between 2003 and 2018 revealed promising results which can be examined under four characteristics: "constant", "emerging", "fading" and "solidifying" concepts. The tokens in the analysis process are words, phrases, topic nodes and links between topic nodes. The outcomes of this study might contribute to tracking the evolution of concepts their emergence or disusage in different time and contexts, and interrelations between different concepts.
keywords content analysis; computational design concepts; IJAC
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id sigradi2018_1451
id sigradi2018_1451
authors Massara Rocha, Bruno; Simão de Lima, Camilo
year 2018
title Open Design: Principles, Interfaces and Values Analysis
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1241-1249
summary This article discuss in which terms design, distribution and production processes have changed after the great technological revolution in a post-industrial era in order to become more democratic and easily shared. After a brief analysis of the economic impact brought by this digital revolution, the article presents newly design values and production environments that emerged from it. We focus in the Open Design movement to show how its process introduce new ways to create and produce architecture. The main idea is to enlighten and explain how Open Design enhances innovation and foster a new democratic practice based on freedom, collaboration and experimentation.
keywords Shared project; Open design; Maker movement; Digital fabrication; Cognitive capitalism
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaadesigradi2019_478
id ecaadesigradi2019_478
authors Nardelli, Eduardo Sampaio
year 2019
title BIM training in Brazil - Preparing professionals for BIM adoption by public administration
doi https://doi.org/10.52842/conf.ecaade.2019.2.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
summary On May 2018 the Brazilian federal government published the Decree 9.377 setting a National Strategy for Information and Dissemination of Building Information Modelling - BIM to enable its adoption by public administration. This strategy has nine targets and among them the task of training professionals in BIM to support the demand that should be generated. A period between 2018 and 2021 has been planned to establish learning objectives and develop model disciplines, a process that, however, should not start from scratch because there are already some BIM training initiatives being performed in the country since the early 2000s. This paper has done an overview on this production highlighting some relevant conceptual contributions to this debate aiming to address challenges and possible ways to support the expected Architectural and Engineering courses restructuring.
keywords BIM, Education, Architecture, Engineering and Construction
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_474
id ecaadesigradi2019_474
authors Nunes de Vasconcelos, Guilherme, Malard, Maria Lucia, van Stralen, Mateus, Campomori, Maurício, Canavezzi de Abreu, Sandro, Lobosco, Tales, Flach Gomes, Isabella and Duarte Costa Lima, Lucas
year 2019
title Do we still need CAVEs?
doi https://doi.org/10.52842/conf.ecaade.2019.3.133
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 133-142
summary This paper discusses the relevance of CAVE systems in comparison with virtual and augmented reality head-mounted displays in terms of immersion experience, costs, maintenance, ease to use, interactivity, and social interaction. It is based on a comparative study of a systematic literature review comprising the works available at CumInCAD and IEEE databases in the period from 1998-2018, and empirical data from technical visits made to five CAVEs in Europe. The discussion seeks to cover the limits of each technology and questions the need for CAVEs nowadays.
keywords CAVE; Virtual Reality; head mounted display; Augmented reality
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_101
id ecaadesigradi2019_101
authors Tebaldi, Isadora, Henriques, Gonçalo Castro and Passaro, Andres Martin
year 2019
title A Generative System for the Terrain Vague - Transcarioca Bus Expressway in Rio de Janeiro
doi https://doi.org/10.52842/conf.ecaade.2019.1.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary The transport infrastructures are important elements in the cities, but, as there is a lack of planning, they tear through the urban fabric and leave empty spaces. Due to government and private disinterest, these spaces become vacant, forgotten and degraded. However, these extensive Terrain Vague offer new potential for urban use. To exploit this potential, we need methodologies that can offer personalised, extensive, feasible urban solutions. For this, we propose a computational generative system, following a 4-step methodology: 1) Site analyses and Terrain Vague identification; 2) Site classification according to parameters based on a "visual grammar"; 3) Algorithm associating space properties with geometric transformation to generate solutions: namely transformative operations in public spaces, additive transformations in semi-public spaces and subtractive operations in semi-private spaces; 4) Solution evaluation and development, according to shade criteria, spatial hierarchy and volumetric density. With our own algorithms combined with genetic algorithms, we guided the evolution of 50 volumetric solutions. The exponential increase in information requires new methodologies (Schwab, 2018). Results show the potential of computational methodologies to produce extensive urban solutions. This research, developed in a final graduation project in Architecture, aims at stimulating generative methodologies in undergraduate courses.
keywords Terrain Vague; generative systems; parametric urbanism; genetic algorithms
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ijac201816204
id ijac201816204
authors Gengnagel, Christoph; Riccardo La Magna, Mette Ramsgaard Thomsen and Martin Tamke
year 2018
title Shaping hybrids – Form finding of new material systems
source International Journal of Architectural Computing vol. 16 - no. 2, 91-103
summary Form-finding processes are an integral part of structural design. Because of their limitations, the classic approaches to finding a form – such as hanging models and the soap-film analogy – play only a minor role. The various possibilities of digital experimentation in the context of structural optimisation create new options for the designer generating forms, while enabling control over a wide variety of parameters. A complete mapping of the mechanical properties of a structure in a continuum mechanics model is possible but so are simplified modelling strategies which take into account only the most important properties of the structure, such as iteratively approximating to a solution via representations of kinematic states. Form finding is thus an extremely complex process, determined both by the freely selected parameters and by design decisions.
keywords Bending active, form finding, hybrid structures, simulation, textile architecture
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_353
id ecaade2018_353
authors Juzwa, Nina and Krotowski, Tomasz
year 2018
title Sketch - Computer - Imagination - Reflections on Architecture Education Methodology
doi https://doi.org/10.52842/conf.ecaade.2018.1.583
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 583-588
summary The article underlines the problem of introducing computer techniques into the education process in master degree studies in architecture. Following the consumer society, developing technologies, changing social values architecture education changed its continuous principle into two-level system. The system well known from other fields of education results in diversified level of knowledge between admitted students on master studies. This fact in together with large exercise groups and a relatively short time allocated with the project requires methodical approach in relationship between a student and a teacher. The article focuses on complexity of a design process within different stages. Special attention is placed to an early design phase of shaping an architecture form because it demands different ways of presentation including freehand sketching, physical modelling and digital modelling. These tools correspond to the subsequent three phases of the design process, starting with exploration of the idea and context, functional decisions and determining the aesthetics. In authors opinion, the first phase of teaching process held without the use of computer techniques led to a higher originality of the architecture concept and increased efficiency in design process.
keywords sketch; computer ; architect's vision; shaping the architecture
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2023_243
id sigradi2023_243
authors O. Oporto, Italo, Martínez Arias, Andrea and Villouta Gutierrez, Daniela
year 2023
title Iluminación y configuración espacial: Una metodología de análisis íntegra: El caso del Servicio de Psiquiatría Guillermo Grant Benavente en Concepción, Chile.”
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 385–396
summary Our everyday environment plays a significant role in shaping our social and emotional interactions. It has been empirically evidenced that natural daylight mitigates depression, insomnia, and other disorders (Weber, 2022). This resonates with the fact that individuals with disrupted circadian rhythms are more susceptible to mental health perturbations (Menculini et al., 2018). The current investigation delves into the correlation between luminosity and spatial configuration within the Guillermo Grantt Benavente Psychiatry Service in Concepción, Chile. The contention is that proficient spatial connectivity and exposure to natural daylight can potentially enhance therapeutic dimensions. The overarching objective is to comprehend this nexus for formulating an architectural design methodology. Specific objectives encompass: 1. Defining the communal spaces under scrutiny; 2. Analyzing luminosity and spatial attributes. The methodological approach encompasses a hybrid framework encompassing interviews, spatial analysis, and illuminance measurements. An intricate interrelationship among preferred spaces, illuminance, and spatial characteristics is anticipated.
keywords Environment, Lighting, Space Syntax, Mental health, Psychiatric residence
series SIGraDi
email
last changed 2024/03/08 14:07

_id ecaade2018_351
id ecaade2018_351
authors Piekarski, Maciej
year 2018
title New Concepts for Application of Topological Interlocking In Architecture
doi https://doi.org/10.52842/conf.ecaade.2018.2.467
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 467-476
summary The paper concerns the issue of constructing flat vaults from elements topologically interlocking inspired by the Abeille blocks. One of the new ideas that are presented is constructing the vaults in an order opposite to the one considered untill now. The problem of static response on the thrust force, significant for flat vaults, is usually solved by the use of the perimeter frame, added only after arranging all the elements of the vault. The paper presents how to arrange the vault inside a previously made frame thanks to application of special components divided into parts, which are inserted at the end and play the same role as a keystone in a stone arch. The other new concept is shaping vaults based on equilateral triangles and regular hexagons, from hexagonal, romboidal and triangular elements shaped and arranged in a manner similar to the one used for shaping square vaults. The last innovative concept presented in a paper concerns shaping the perimeter frame from the components providing stiffness of the frame only due to topological interlocking. All presented ideas have been analised purely at a geometric level.
keywords reciprocal structures; flat vaults; topological interlocking
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia18_30
id acadia18_30
authors Przybylski, Maya
year 2018
title Critical Computational Literacy: A Call for the Development of Socially Aware, Ethically Minded Research within ACADIA
doi https://doi.org/10.52842/conf.acadia.2018.030
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 30-35
summary As computational design matures and strives to move out of the studio/lab and into the real world, multiple dimensions of literacy, valuing the social, the political, and the ethical as well as the technical and the creative, must be acknowledged and supported. This paper evaluates the presence of research advancing socially aware, ethically minded issues currently found in ACADIA’s body of research and offers a strategy for shaping future work in this area. First, data from the CumInCAD index is used to provide a quantitative understanding of the degree to which these issues are represented in ACADIA’s history, with particular focus on the last decade. The paper goes on to articulate key offerings from the field of Software Studies to motivate and identify possible entry points for computational designers to further engage the social and ethical agencies tied to their work. Within this context, the paper argues that the set of lenses used to understand a project's digital components expands to include social, cultural, political, and ethical effects in addition to the technical realities of implementation. The analytical methods presented are intended to support a preliminary survey of ACADIA's literature and serve as a first step in identifying avenues for pursuing socially aware, ethically minded computational design research.
keywords work in progress, design theory & history, history/theory of computation, hybrid practices, ethics
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id caadria2018_000
id caadria2018_000
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 1
doi https://doi.org/10.52842/conf.caadria.2018.1
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, 578 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2018_001
id caadria2018_001
authors T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.)
year 2018
title CAADRIA 2018: Learning, Prototyping and Adapting, Volume 2
doi https://doi.org/10.52842/conf.caadria.2018.2
source Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, 610 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2024_176
id caadria2024_176
authors Xiao, Yijun and Yuan, Sinan
year 2024
title Unraveling the Dynamics of Urban Catering: Analysing the Factors in Shaping Neighbourhood Restaurants Sceneries
doi https://doi.org/10.52842/conf.caadria.2024.2.485
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 485–494
summary This research explores the dynamics of neighbourhood restaurants distribution in Tianjin, China, against the backdrop of rapid urbanization and evolving consumer preferences. Analysing key factors such as consumer demand, transportation, location, built environment, and competition, the study utilizes count regression models to assess occurrence frequency. The investigation reveals a significant surge in community restaurants from 2018 to 2021, influencing spatial patterns. Population density, housing prices, transportation infrastructure, and built environment emerge as pivotal factors impacting neighbourhood restaurants dynamics. The Hurdle-NB model, considering both count and zero parts, demonstrates the best fit. This study contributes nuanced insights for policymakers and industry stakeholders, aiding in enhancing accessibility, sustainability, and competitiveness of neighbourhood restaurants in urban areas amidst changing urban dynamics and consumer trends.
keywords Urban Catering, Culinary Geography, Neighbourhood Restaurants
series CAADRIA
email
last changed 2024/11/17 22:05

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_611253 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002