CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
doi https://doi.org/10.52842/conf.acadia.2018.434
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ecaade2018_233
id ecaade2018_233
authors Kontiza, Iacovina, Spathi, Theodora and Bedarf, Patrick
year 2018
title Spatial Graded Patterns - A case study for large-scale differentiated space frame structures utilising high-speed 3D-printed joints
doi https://doi.org/10.52842/conf.ecaade.2018.2.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-46
summary Geometric differentiation is no longer a production setback for industrial grade architectural components. This paper introduces a design and fabrication workflow for non-repetitive large-scale space frame structures composed of custom-manufactured nodes, which exploits the advantages of latest advancements in 3D-printing technology. By integrating design, fabrication and material constraints into a computational methodology, the presented approach addresses additive manufacturing of functional industry-grade parts in short time, high speed and low cost. The resulting case study of a 4.5 x 4.5 x 2.5 m lightweight kite structure comprises 1380 versatile fully-customised connectors and outlines the manifold potential of additive manufacturing for architecture much bigger than the machine built space. First, after briefly introducing space frames in architecture, this paper discusses the computational framework of generating irregular space frames and parametric joint design. Second, it examines the advantages of MJF printing in conjunction with integrating smart sequencing details for the following assembly process. Finally, a conclusive outlook is given on improvements and further developments for bespoke 3D-printed space frame structures.
keywords 3D-printing; Multi-Jet Fusion; Space Frame; Graded Subdivision
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaaderis2018_000
id ecaaderis2018_000
authors Odysseas Kontovourkis
year 2018
title Sustainable Computational Workflows (Front Matter)
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. i-xii
keywords At a time when sustainability plays a key role in the way different disciplines approach development and production, the role of digital technology is crucial, as through smart and efficient techniques, it can lead to the creative design, analysis, evaluation and fabrication of solutions that are ecologically and economically viable and socially accessible. On the other hand, recent developments in the socio-economic context have caused changes and redevelopments in Europe, particularly in the Mediterranean region, which have a direct impact and affect the overall reflection on how new technologies, currently in open source and with a widely accessible status, contribute to a better and more sustainable future, without running isolated or far beyond today’s reality.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_154
id caadria2018_154
authors Scotto, Fabio, Lloret Fritschi, Ena, Gramazio, Fabio, Kohler, Matthias and Flatt, Robert J.
year 2018
title Adaptive Control System for Smart Dynamic Casting - Defining Fabrication-Informed Design Tools and Process Parameters in Digital Fabrication Processes
doi https://doi.org/10.52842/conf.caadria.2018.1.255
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 255-264
summary This paper describes the process control system and the fabrication-informed design tool developed for Smart Dynamic Casting (SDC) - the innovative technique that merges the process of slipforming with robotic fabrication technologies to enable greater geometrical freedom in the production of architectural components made of concrete. The paper focuses on the process parameters that characterizes the production workflow and it outlines the system-specific geometry rationalization algorithm developed for the definition of feasible geometries. Furthermore, the paper introduces the first application of the SDC design tool within the architectural context of the DFAB HOUSE, a building project realized entirely by robotic and digital technologies.
keywords Digital fabrication; Smart Dynamic Casting; Control System; Design tool
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_262
id caadria2021_262
authors Olthof, Owen, Globa, Anastasia and Stracchi, Paolo
year 2021
title SISTEMA NERVI - Sustainable Production of Optimised Floor Slabs Through Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2021.1.723
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 723-732
summary 'Sistema Nervi' (the Nervi System) invented by Pier Luigi Nervi greatly economised the production of complex concrete forms optimised in both material usage and structurally. However it did not translate well into other contexts due to labour and material considerations (Leslie, 2018). This paper explores novel methodologies of producing optimised floor slabs and concrete structures, using digital fabrication techniques, focusing on both labour economisation and sustainability principles. A module from the Australia Square lobby slab has been used as the set geometry and was reproduced using differing techniques of fabrication for a comparative study. The study was conducted at scale (1:20). The viability for production at full scale (1:1) for manufacturing is discussed. The assessment criteria for the tests are divided into four categories: Cost, Time, Performance, and Sustainability. 3D printing of PLA plastic and ceramic clay extrusion printing has been used to produce removable or degradable formworks. These technologies have been selected due to their current market availability and associated costs. This study hopes to introduce improved methodologies for producing optimized concrete forms, as well as the sustainability potentials of a degradable formwork such as ceramic clay. Both systems were ultimately able to produce workable formworks for optimised shapes and showed promise for reducing labour involved as well as presenting with material sustainability for discussion.
keywords Concrete formwork; Sustainability; Degradable formwork; Optimised concrete; Advanced fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2018_261
id ecaade2018_261
authors Austern, Guy, Capeluto, Isaac Guedi and Grobman, Yasha Jacob
year 2018
title Rationalization and Optimization of Concrete Façade Panels
doi https://doi.org/10.52842/conf.ecaade.2018.1.727
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 727-734
summary The presented research develops methods for introducing fabrication constraints into architectural design, a process often referred to as design rationalization. In the first stage of the research, a computational method for evaluating the fabrication potential of geometries was developed. The method predicts the feasibility, material use and machining time of a geometry in relation to different fabrication techniques. It uses geometric properties to mathematically estimate these parameters without simulating the actual machining. The second stage of the research describes processes for adapting architectural designs to their fabrication technique. The evaluation method previously developed is used as a fitness criterion for a computational optimization algorithm aimed at adapting concrete façade elements to the fabrication constraints of their molds. A case study demonstrates how the optimization process succeeded in improving the feasibility of different geometries within a time-frame suitable to the architectural design process, and without significant changes to the initial design.
keywords Optimization; Digital Fabrication; Rationalization; Computational Design Process
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_136
id acadia18_136
authors Austern, Guy; Capeluto, Isaac Guedi; Grobman, Yasha Jacob
year 2018
title Fabrication-Aware Design of Concrete Façade Panels. A Computational Method For Evaluating the Fabrication of Large- Scale Molds in Complex Geometries
doi https://doi.org/10.52842/conf.acadia.2018.136
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 136-145
summary This paper presents a design methodology for concrete façade panels that takes into consideration constraints related to digital fabrication machinery. A computational method for the real-time evaluation of industrial mold-making techniques, such as milling and hot wire cutting, was developed. The method rapidly evaluates the feasibility, material use, and machining time of complex geometry molds for architectural façade elements. Calculation speed is achieved by mathematically approximating CAM-machining operations. As results are obtained in nearly real time, the method can be easily incorporated into the architectural design process during its initial stages, when changes to the design are more effective.

In the paper, we describe the algorithms of the computational evaluation method. We also show how it can be used to introduce fabrication considerations into the design process by using it to rationalize several types of panels. Additionally, we demonstrate how the method can be used in complex, large-scale architectural projects to save machining time and materials by evaluating and altering the paneling subdivision.

keywords full paper, fabrication & robotics, digital fabrication, performance + simulation, geometry
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
doi https://doi.org/10.52842/conf.acadia.2018.444
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id caadria2018_165
id caadria2018_165
authors Yuan, Philip F., Chai, Hua and Jin, Jinxi
year 2018
title Digital Form-Finding and Fabrication of Strained Gridshells with Complex Geometries
doi https://doi.org/10.52842/conf.caadria.2018.1.267
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 267-276
summary Strained gridshells has been one of the most efficient structure system to cover large spans by lightweight construction. Nevertheless, gridshells structure has been seldom used due to the difficulties in gridshells form-finding and erection, as well as its limitation of morphological possibilities. In this regard, this paper aims to provide an integrated design and fabrication approach for extending the application of strained gridshells into the field of complex geometries. First, a form-finding method for complex gridshells design was put forward and tested taking Enneper surface as examples; secondly, the form-finding result was further developed into a gridshells system consisting of continuous laths, rotatable joints and rigid edge beams, which were optimized afterwards based on the structural simulation result with Finite Element Analysis. Third, the construction difficulties of this system were fully addressed in the robotic fabrication and erection process of a full scale prototype. This research tries to fully combine the structural characteristics of the strained gridshell with digital fabrication technologies to extend the application of strained gridshells into structures with more complex geometries.
keywords Strained Gridshell; Computational Form-finding; Structural Optimization; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia18_302
id acadia18_302
authors Zivkovic, Sasa; Battaglia, Christopher
year 2018
title Rough Pass Extrusion Tooling. CNC post-processing of 3D-printed sub-additive concrete lattice structures
doi https://doi.org/10.52842/conf.acadia.2018.302
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 302-311
summary Rough Pass Extrusion Tooling advances the manufacturing precision of full-scale Sub-Additive 3D printed concrete lattices in a three-step process that involves spatial 3D printing, high precision 3D scanning, and CNC post-processing. Utilizing robotics and computation, Sub-Additive Manufacturing (Battaglia et al. 2018) leverages digital workflows to produce structurally, materially, and spatially optimized lightweight concrete building components. Instead of further refining the 3D printing practice towards accuracy, and unlike other research projects that investigate 3D printing and subsequent post-processing, the method proposes to deliberately print a “rough pass”, accommodating any fabrication inaccuracy inevitably resulting from the concrete material and nozzle extrusion process. In a second step, supported by the advancement of 3D scanning, accuracy and geometric intricacy are achieved through locally post-processing components along edges, in pockets, on surfaces, and in areas of joinery. Rough Pass Extrusion Tooling enables the incorporation of higher fabrication tolerances as well as the integration of building systems, hardware, and complex connections. The method takes full advantage of the 3D printing process while introducing means to dramatically increase fabrication precision. Procedural infidelity – not aiming to solve accuracy through 3D printing alone – enables the development of a technically, methodologically, aesthetically, and performatively progressive multi-process fabrication method which opens a new realm for concrete printing accuracy. This paper closely examines CNC post-processing for Sub-Additive concrete print assemblies, addressing methodologies, opportunities, and shortcomings of such an approach.
keywords full paper, fabrication & robotics, materials/adaptive systems, digital craft, fabrication tolerances
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2018_167
id ecaade2018_167
authors Anton, Ana and Abdelmahgoub, Ahmed
year 2018
title Ceramic Components - Computational Design for Bespoke Robotic 3D Printing on Curved Support
doi https://doi.org/10.52842/conf.ecaade.2018.2.071
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-78
summary Additive manufacturing enables the fabrication of affordable customisation of construction elements. This paper presents a computational design method developed for 3D printing of unique interlocking ceramic components, which assemble into segmented columns. The fabrication method is ceramic-paste extrusion, robotically placed on semi-cylindrical molds. Material system and fabrication setup contribute to the development of an integrated generative system which includes overall design, assembly logic and printing tool-path. By contextualizing clay extrusion and identifying challenges in bespoke tool-path generation, this paper discusses detailing opportunities in digital fabrication. Finally, it identifies future directions of research in extrusion-based printing.
keywords CAAD education; generative design; robotic 3D printing; clay extrusion; curved support
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2018_235
id caadria2018_235
authors Araullo, Rebekah
year 2018
title 3D Growth Morphology - Tectonics of Custom Shapes in Reciprocal Systems
doi https://doi.org/10.52842/conf.caadria.2018.1.307
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 307-316
summary Traditionally, Reciprocal Frame (RF) structures feature the use of linear materials such as rods, beams and bars. Their potential in varied curvature and doubly-curved forms illustrate ongoing advances in computation and fabrication. Flexible to using small available materials that span large areas, RF systems appeal as a popular research topic to demonstrate tectonic and engineering feats. However, RF using planar materials is a non-traditional application and is not widely explored in research. This paper discusses RF research projects that feature planar custom shapes with unique 3D tectonic capabilities. Their aesthetic properties and structural opportunities will be discussed and evaluated. The objective of this paper is to examine the use of planar materials and highlight the potential of irregular 3D reciprocal systems. The use of custom shapes in a reciprocal system and their unique growth morphologies presents a novel direction in the practice of reciprocal systems.
keywords Reciprocal Frames; Spaceframes; Computational Design; Digital Fabrication; RF Growth Morphology
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia18_424
id acadia18_424
authors Bucklin, Oliver; Drexler, Hans; Krieg, Oliver David; Menges, Achim
year 2018
title Integrated Solid Timber. A multi-requisite system for the computational design,fabrication, and construction of versatile building envelopes
doi https://doi.org/10.52842/conf.acadia.2018.424
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 424-433
summary The paper presents the development of a building system made from solid timber that fulfils the requirements of modern building skins while expanding the design possibilities through innovation in computational design and digital fabrication. Multiple strategies are employed to develop a versatile construction system that generates structure, enclosure and insulation while enabling a broad design space for contemporary architectural expression. The basic construction unit augments the comparatively high insulation values of solid timber by cutting longitudinal slits into beams, generating air chambers that further inhibit thermal conductivity. These units are further enhanced through a joinery system that uses advanced parametric modeling and computerized control to augment traditional joinery techniques. Prototypes of the system are tested at a building component level with digital models and physical laboratory tests. It is further evaluated in a demonstrator building to test development and further refine design, fabrication and assembly methods. Results are integrated into proposals for new methods of implementation. The results of the research thus far demonstrate the validity of the strategy, and continuing research will improve its viability as a building system.
keywords full paper, materials and adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia18_386
id acadia18_386
authors Chen, Canhui; Burry, Jane
year 2018
title (Re)calibrating Construction Simplicity and Design Complexity
doi https://doi.org/10.52842/conf.acadia.2018.386
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 386-393
summary Construction simplicity is crucial to cost control, however design complexity is often necessary in order to meet particular spatial performance criteria. This paper presents a case study of a semi-enclosed meeting pod that has a brief that must contend with the seemingly contradictory conditions of the necessary geometric complexities imperative to improved acoustic performance and cost control in construction. A series of deep oculi are introduced as architectural elements to link the pod interior to the outside environment. Their reveals also introduce sound reflection and scattering, which contribute to the main acoustic goal of improved speech privacy. Represented as a three-dimensional funnel like shape, the reveal to each opening is unique in size, depth and angle. Traditionally, the manufacturing of such bespoke architectural elements in many cases resulted in lengthy and costly manufacturing processes. This paper investigates how the complex oculi shape variations can be manufactured using one universal mold. A workflow using mathematical and computational operations, a standardized fabrication approach and customization through tooling results in a high precision digital process to create particular calculated geometries, recalibrated at each stage to account for the paradoxical inexactitudes and inevitable tolerances.
keywords work in progress,tolerance, developable surface, form finding, construction simplicity, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2018_425
id ecaade2018_425
authors Foged, Isak Worre and Jensen, Mads Brath
year 2018
title Thermal Compositions Through Robot Based Thermal Mass Distribution
doi https://doi.org/10.52842/conf.ecaade.2018.1.783
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 783-790
summary This work develops, implement and test a method and model for the distribution of material in relation to thermal performances through robot based extrusion of concrete. The aim is to suggest a way for architecture to use advanced fabrication techniques towards environmental passive strategies, which potentially decrease a buildings operative energy budget, while creating articulated thermal sensations for humans. Through computational, material and design explorations, by prototypes and a final demonstrator, the work proposes how thermal mass can be organized both in terms of its robot based successive fabrication based layering and as an approach to generate an assembly of thermal based building blocks into architectural structures.
keywords Robot based concrete extrusion; Thermal Architecture; Simulation; Demonstrator
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_336
id acadia18_336
authors Forren, James; Nicholas, Claire
year 2018
title Lap, Twist, Knot. Intentionality in digital-analogue making environments
doi https://doi.org/10.52842/conf.acadia.2018.336
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 336-341
summary This paper discusses a theoretical approach and method of making in computational design and construction. The project examines digital and analogue building practices through a social anthropological and STS lens to better understand the use of technology in complex making environments. We position this with respect to contemporary investigations of materials in architecture which use physical and virtual prototyping and collaborative building. Our investigation extends this work by parsing complex making through ethnographic analysis. In doing so we seek to recalibrate computational design methods which privilege rote execution of digital form. This inquiry challenges ideas of agency and intention as ‘enabled’ by new technologies or materials. Rather, we investigate the troubling (as well as extension) of explicit designer intentions by the tacit intentions of technologies. Our approach is a trans-disciplinary investigation synthesizing architectural making and ethnographic analysis. We draw on humanistic and social science theories which examine activities of human-technology exchange and architectural practices of algorithmic design and fabrication. We investigate experimental design processes through prototyping architectural components and assemblies. These activities are examined by collecting data on human-technology interactions through field notes, journals, sketches, and video recordings. Our goal is to foster (and acknowledge) more complex, socially constructed methods of design and fabrication. This work in progress, using a cement composite fabric, is a preliminary study for a larger project looking at complex making in coordination with public engagement.
keywords work in progress, illusory dichotomies, design theory & history, materials/adaptive systems, collaboration, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaaderis2018_119
id ecaaderis2018_119
authors Georgiou, Odysseas
year 2018
title The Oval - a complex geometry BIM case study
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 141-150
keywords This paper documents the steps followed to design and construct an oval shaped, high rise structure in Limassol Cyprus. The author presents the developed computational framework which was purposely built to support multiple levels and disciplines of design, construction and digital fabrication leading to a successful delivery of a complex geometry project within time and budget. A fully informed model involving multi-disciplinary data ranging from its conception to its completion establishes a sustainable paradigm for the construction industry, mainly because of its single source of control as opposed to other precedents involving multiple models and information.
series eCAADe
email
last changed 2018/05/29 14:33

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_797258 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002