CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 624

_id sigradi2018_1413
id sigradi2018_1413
authors Ku, Yee Kee; Kirley, Michael; Karakiewicz, Justyna; Jiang, Yi Mo
year 2018
title Conceptualizing the evolution of Tmor-Da
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 531-537
summary The urban dynamics observable in an informal settlement are akin to the characteristics of a complex adaptive system. In this paper, we describe an Agent-Based Model designed to simulate the urban dynamics of an informal settlement, Tmor-Da, in Phnom Penh, Cambodia. The overarching goal was to understand the possible rules that guided the development of built forms and the use of residue spaces in Tmor-Da. A series of simulation experiments were used to examine alternative hypotheses derived from field work and desktop analysis related to morphological changes associated with spatial units, including homes, shops, the orphanage, church and temple. The results suggest that the complex, emergent patterns encapsulated within the informal settlement could be reproduced in a simulation model. We conclude that our model can be used as an investigative tool to explore the most plausible factors contributing to the evolutionary trajectory of an informal settlement.
keywords Informal settlement; Urban evolution; Urban morphology; Agent-based model; Complex adaptive system
series SIGRADI
email
last changed 2021/03/28 19:58

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

_id ecaade2018_227
id ecaade2018_227
authors Chatzitsakyris, Panagiotis
year 2018
title EventMode - A new computational design tool for integrating human activity data within the architectural design workflow
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 649-656
doi https://doi.org/10.52842/conf.ecaade.2018.1.649
summary Architectural designers are currently depending on a multitude of elaborate computational tools in order to explore, manipulate and visualize the geometric form of their building projects. However, if architecture can be perceived as the manipulation of geometric form in direct relation to human activities and events that take place inside it, then it is evident that such design parameters are not sufficiently represented in the currently available modeling software. Would it be possible to introduce the human activity element in the aforementioned computational tools in a way that informs the design process and improves the final building product? This paper attempts to answer this question by introducing a new experimental design tool that enables the creation of parametric human activity envelopes within three-dimensional digital models. The novel approach is that this tool enables the parametric interaction of these components with the actual building geometry and generates novel visual and data representations of the 3D model. The goal is to improve the decision-making process of architects as well as their clients by enabling them to evaluate and iterate their designs based not only on the building's form but also on the human spatial events that take place inside it. A prototype implementation demonstrates the tool's practical application through three design examples.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id caadria2019_665
id caadria2019_665
authors Jin, Jinxi, Han, Li, Chai, Hua, Zhang, Xiao and Yuan, Philip F.
year 2019
title Digital Design and Construction of Lightweight Steel-Timber Composite Gridshell for Large-Span Roof - A Practice of Steel-timber Composite Gridshell in Venue B for 2018 West Bund World AI Conference
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 183-192
doi https://doi.org/10.52842/conf.caadria.2019.1.183
summary Timber gridshell is an efficient structural system. However, the feature of double curved surface result in limitation of practical application of timber gridshell. Digital technology provides an opportunity to break this limitation and achieve a lightweight free-form gridshell. In the practice of Venue B for 2018 West Bund World AI Conference, architects and structural engineers cooperated to explore innovative design of lightweight steel-timber composite gridshell with the help of digital tools. Setting digital technology as support and restrains of the project as motivation, the design tried to achieve the realization of material, structure, construction and spatial expression. The digital design and construction process will be discussed from four aspects, including form-finding of gridshell surface, steel-timber composite design, digital detailed design and model-based fabrication and construction. We focuses on the use of digital tools in this process, as well as the role of the design subject.
keywords Timber Gridshell; Steel-timber Composite; Digital Design and Construction; Lightweight Structure; Large-span Roof
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaaderis2018_106
id ecaaderis2018_106
authors Kourniatis, Nikolaos, Christidi, Nikoletta, Fakiri, Ioanna, Tsoumpri, Dimitra, Tsoukalas, Nikolaos and Karras, Evaggelos
year 2018
title The Geometrical Structure of new Architectural Object - The role of meta-mechanics of Holography in its formation
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 29-38
keywords In recent years there has been a gradually increasing interest in the terms on which the design and geometrical representation of the architectural object is based. ?he true challenge lies in the development of a methodology or mechanism which, having as its starting point the traditional object geometrical representation practices, will allow for a combination of new technologies towards creating new visual messages. In this research, the process of putting together a new architectural object, the digital hologram, will be seen as one such mechanism. The new views and strategies on space are open to treating spatial constructions, as a restructuring of the structures that could bring about changes for more favorable conditions for the representation of the architectural form. Thus, the strategies of architectural pioneering are judged by their ability to develop new procedures that are capable of reversing.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_276
id ecaade2018_276
authors Kruºa Yemiºcio?lu, Müge, Gönenç Sorguç, Arzu and Özgenel, Ça?lar F?rat
year 2018
title Crystal Formations and Symmetry in the Search of Patterns in Architecture
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 121-128
doi https://doi.org/10.52842/conf.ecaade.2018.2.121
summary Nature is always full of patterns inspiring all the disciplines and especially architecture in many ways. Currently, with the advances in technology and growing interest towards nature-driven studies, retrieving information from nature has a new connotation in scales and dimensions including both living and non-living beings. In this study, it is aimed to explore the scales of nature from Nano to Macro and a holistic approach is embraced to cope with the complexity of nature and architecture. To understand these complexities, patterns in different forms and scales serve as valuable tools to decode and recode information from one domain to another through locating the order and how patterns exist in different and changing environments with respect to forces and the urge of the existence of the being.This research focuses on the behavior of crystal formation which can be observed both in biotic and abiotic nature to understand the order generating the patterns in nature and its adaptation into a different and changing environment. This information of crystallization has great potential for architecture in terms of spatial structures, new materials and introducing a novel lattice for freeform structures. In this study, the potentials, limits and possible contributions of crystal formation are stated for architecture in the search of symmetry and patterns.
keywords nature-driven; computational design; crystal formation; symmetry; pattern
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_293
id caadria2018_293
authors Lee, Jisun and Lee, Hyunsoo
year 2018
title The Visible and Invisible Network of a Self-Organizing Town - Agent-Based Simulation for Investigating Urban Development Process
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 411-420
doi https://doi.org/10.52842/conf.caadria.2018.2.411
summary This study applies self-organization as a methodology to understand the complex process of city networks caused by interactions between spatial structures and individual behaviors. The agent-based simulations have been conducted to investigate the visible and invisible networks understanding the self-organized aspects of city development processes. To develop optimal future networks providing connectivity and accessibility this study investigates spatial network configurations from internal individual behavior and movement. As results, it was found that the spatial configurations of the agent movement trails match to the current district boundaries and the similar network patterns were seen in various control values of agent behavior settings. This study contributes to searching out the hierarchy of network structures which is an important factor for re-planning of the way system.
keywords Agent-based simulation; network analysis ; self organization ; urban development process ; Physarum polycephalum
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_213
id ecaade2018_213
authors Lohse, Theresa, Fujii, Ryuta and Werner, Liss C.
year 2018
title Multi-Dimensional Interface Based Spatial Adaption - A Prototype For A Multi-Sensory User Interface Employing Elastic Materials
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 169-176
doi https://doi.org/10.52842/conf.ecaade.2018.2.169
summary Patten and Ishii (2000) discovered that people are employing more versatile strategies for spatial distribution when using a tangible user interface (TUI) as opposed to a graphics user interface (GUI) (Patten & Ishii, 2000). Besides, the generated information outputs of conventional two-dimensional interacting screens are currently almost entirely addressing the visual and acoustic senses but lacking in other sensory stimuli - such as haptic, body equilibrium and sense of gravity. With the experiment described here, the multi-dimensionality of both the input on the interface and the output of the human interaction will be challenged. This paper aims to introduce a method to a real world versatile three-dimensional interface actuating a simulated spatial environment that substantiates the more unconventional sensory perception mentioned above. A physical prototype using an Arduino will be assembled to test the feasibility of the structure.
keywords spatial formation; virtual reality; tangible user interface; body equilibrium; physical computing
series eCAADe
email
last changed 2022/06/07 07:59

_id ijac201816304
id ijac201816304
authors Miao, Yufan; Reinhard Koenig, Katja Knecht, Kateryna Konieva, Peter Buš and Mei-Chih Chang
year 2018
title Computational urban design prototyping: Interactive planning synthesis methods—a case study in Cape Town
source International Journal of Architectural Computing vol. 16 - no. 3, 212-226
summary This article is motivated by the fact that in Cape Town, South Africa, approximately 7.5 million people live in informal settlements and focuses on potential upgrading strategies for such sites. To this end, we developed a computational method for rapid urban design prototyping. The corresponding planning tool generates urban layouts including street network, blocks, parcels and buildings based on an urban designer’s specific requirements. It can be used to scale and replicate a developed urban planning concept to fit different sites. To facilitate the layout generation process computationally, we developed a new data structure to represent street networks, land parcellation, and the relationship between the two. We also introduced a nested parcellation strategy to reduce the number of irregular shapes generated due to algorithmic limitations. Network analysis methods are applied to control the distribution of buildings in the communities so that preferred neighborhood relationships can be considered in the design process. Finally, we demonstrate how to compare designs based on various urban analysis measures and discuss the limitations that arise when we apply our method in practice, especially when dealing with more complex urban design scenarios.
keywords Procedural modeling, spatial synthesis, generative design, urban planning
series journal
email
last changed 2019/08/07 14:03

_id caadria2018_070
id caadria2018_070
authors Pandjaitan, Poltak
year 2018
title Architectonics of Crystal Space
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 183-192
doi https://doi.org/10.52842/conf.caadria.2018.1.183
summary The basic research project addresses the question of spatiality in architecture and how to define space by geometrically mediating between spatialities. Based on interdisciplinary explorations of crystal structures and their specific constitutions, spatial paradigms are examined and implemented in the algebraic framework of crystals. The goal of the ongoing research is not to resemble and mimic these emergent crystal arrangements. It is only about the general principle of these formation processes particularly with regard to aperiodic quasicrystals. Through the purposive abstraction and translation of spatialities combined with the notion of crystals as a code like structure, it is possible to scrutinize the meaning of space in order to create space for new architectonical articulations.
keywords crystal; quasicrystal; lattice; aperiodic; architectonics
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2018_361
id ecaade2018_361
authors Schneider, Sven, Kuliga, Saskia, Weiser, René, Kammler, Olaf and Fuchkina, Ekaterina
year 2018
title VREVAL - A BIM-based Framework for User-centered Evaluation of Complex Buildings in Virtual Environments
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 833-842
doi https://doi.org/10.52842/conf.ecaade.2018.2.833
summary The design of buildings requires architects to anticipate how their future users will experience and behave in them. In order to do this objectively and systematically user studies in Virtual Environments (VEs) are a valuable method. In this paper, we present a framework for setting up, conducting and analysing user studies in VEs. The framework is integrated in the architectural design process by using BIM as a common modeling and visualisation platform. In order to define the user studies simple and flexible for the individual purposes we followed a modular concept. Modules thereby refer to different kinds of user study methods. Currently we developed three modules (Wayfinding, Spatial Experience and Qualitative Annotations), each having their individual requirements regarding their setup, interaction method and visualisation of results. In the course of a architectural design studio, students applied this framework to evaluate their building designs from a user perspective.
keywords Pre-Occupancy Evaluation; Virtual Reality; User-centered Design; Building Information Modeling; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_337
id caadria2018_337
authors Tang, Ming
year 2018
title From Agent to Avatar - Integrate Avatar and Agent Simulation in the Virtual Reality for Wayfinding
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 503-512
doi https://doi.org/10.52842/conf.caadria.2018.1.503
summary This paper describes a study of using immersive virtual reality (VR) technology to analyze user behavior related to wayfinding, and the integration of the technology with the multi-agent simulation and space syntax. Starting with a discussion on the problems of current agent-based simulation (ABS) and space syntax in constructing the micro-level interactions for wayfinding, the author focuses on how the cognitive behavior and spatial knowledge can be achieved with a player controlled avatar in response to other computer controlled agents in a virtual building. This approach starts with defining the proposed Avatar Agent VR system (AAVR), which is used for capturing a player's movement in real time and form the spatial data, then visualizing the data with various representation methods. Combined with space syntax and ABS, AAVR is used to examine various players' wayfinding behaviors related to gender, spatial recognition, and spatial features such as light, sound, material, and other architectural elements.
keywords Virtual Reality; wayfinding simulation; agent; avatar; multi-agent simulation; space syntax
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_316
id caadria2018_316
authors Yan, Chao, Zhang, Yunyu, Yuan, Philip F. and Yao, Jiawei
year 2018
title Virtual Motion - Shifting Perspective as an Instrument for Geometrical Construction
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 471-480
doi https://doi.org/10.52842/conf.caadria.2018.2.471
summary From the invention of projection to the emergence of digital technology, there's a clear correspondences among the transformations of visual representation paradigm in art, the developments of design instrument in architecture, and the human perception of time/space. Base on the examination of this particular historical trajectory, this paper focuses the working mechanism of shifting perspective as an alternative design instrument to explore the possibility of embedding time and motion into static form in digital age. Firstly, the paper reviews how the shifting perspective was introduced to represent space in modern western painting and photography. Then based on the research on shifting perspective, the paper develops a design tool, which would be able to translate motion into the particular geometrical feature of a generated 3D object. In the end, the paper brings further discussions about the formal and spatial effects brought by this new tool, and its potential to incorporate the perceptive image of human being into design process.
keywords Shape Study; Projective Geometry; Shifting Perspective; Motion; Time Dimension
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_161
id caadria2018_161
authors Huang, Xiaoran, White, Marcus and Burry, Mark
year 2018
title Design Globally, Immerse Locally - A Synthetic Design Approach by Integrating Agent Based Modelling with Virtual Reality
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 473-482
doi https://doi.org/10.52842/conf.caadria.2018.1.473
summary The last three decades have witnessed the explosion of technology and its impact on the architecture discipline which has drastically changed the methods of design. New techniques such as Agent-based modeling (ABM) and Virtual Reality (VR) have been widely implemented in architectural and urban design domains, yet the potential integration between these two methods remains arguably unexploited. The investigation in this paper aims to probe the following questions: How can architects and urban designers be informed more comprehensively by melding ABM and VR techniques at the preliminary/conceptual design stage? Which platform is considered more appropriate to facilitate a user-friendly system and reduces the steep learning curve? And what are the potential benefits of this approach in architectural education, particularly for the design studio environment? With those questions, we proposed a prototype in Unity, a multi-platform development tool that originated from the game industry, to simulate and visualize pedestrian behaviors in urban environments with immersive design experience and tested it in a scenario-based case study. This approach has also been further tested in an architectural design studio, demonstrating its technical feasibility as well as the potential contributions to the pedagogy.
keywords Agent based modelling; Virtual Reality; Urban Design
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
doi https://doi.org/10.52842/conf.caadria.2023.2.231
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

_id sigradi2018_1840
id sigradi2018_1840
authors Villa Carrero, Juan Manuel; Maldonado Montagut, Álvaro
year 2018
title Informed Matter, Design and its Relationship to Force Dynamics
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 150-155
summary The form can be described as the action of a force on matter, so this research turned to the essence of this fact of reality to objectively confront it, explore its methods of representation and challenge our design responses. The spaces of topological order that were perceived in the results move away from concrete imaginaries, symbols and metaphors; the design was the result of the information and the matter acted as an informed mass that was modeled from different forces that acted on it. This general research had as its general objective to understand the real, this reality understood as an abstract formal structure, which is based on complex scientific and experimental work, within the digital world.
keywords Forces Dynamics, Simulation, Design, Technologies, Data
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1565
id sigradi2018_1565
authors Ba??k, Altan; Alaçam, Sema
year 2018
title Sharing Background Noise: Enactive Approach in Reading Auditory Space
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 100-108
summary This paper conceptualizes the Auditory space in terms of hearing process by employing the Enactive Approach. In this context, this study aims investigate the spatial awareness and proposes a research methodology to achieve access to the auditory space where places share similar background noise. This methodology consists of two phases: field recording of the pre-determined route first explored by the Spectrogram Sound Analysis (SSA) technique, secondly with the participation of 8 subjects, a survey analysis based on listening to records captured from the predefined route. This research aims to reveal potential use of SSA by relating to survey examination as a new way of reading space.
keywords Background Noise, Auditory Space, Enactive Approach, Spectrogram, Survey Examination
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia18_286
id acadia18_286
authors Claire Im, Hyeonji; AlOthman, Sulaiman; García del Castillo, Jose Luis
year 2018
title Responsive Spatial Print. Clay 3D printing of spatial lattices using real-time model recalibration
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 286-293
doi https://doi.org/10.52842/conf.acadia.2018.286
summary Additive manufacturing processes are typically based on a horizontal discretization of solid geometry and layered deposition of materials, the speed and the rate of which are constant and determined by the stability criteria. New methods are being developed to enable three-dimensional printing of complex self-supporting lattices, expanding the range of possible outcomes in additive manufacturing. However, these processes introduce an increased degree of formal and material uncertainty, which require the development of solutions specific to each medium. This paper describes a development to the 3D printing methodology for clay, incorporating a closed-loop feedback system of material surveying and self-correction to recompute new depositions based on scanned local deviations from the digital model. This Responsive Spatial Print (RSP) method provides several improvements over the Spatial Print Trajectory (SPT) methodology for clay 3D printing of spatial lattices previously developed by the authors. This process compensates for the uncertain material behavior of clay due to its viscosity, malleability, and deflection through constant model recalibration, and it increases the predictability and the possible scale of spatial 3D prints through real-time material-informed toolpath generation. The RSP methodology and early successful results are presented along with new challenges to be addressed due to the increased scale of the possible outcomes.
keywords work in progress, closed loop system, spatial clay printing, self-supporting lattice, in-situ printking, extrusion rate, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_911219 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002