CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id acadia23_v3_169
id acadia23_v3_169
authors Kanngieser, AM
year 2023
title Ethics and Ecocidal Listening: Oceanic Refractions as an Artistic Case Study
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary In 2018 I was invited to visit the archipelago of Kiribati, located in the Pacific Ocean around 1000 miles from Hawaii. A big ocean state, Kiribati holds a land mass of around 315 sq. miles and an oceanic economic zone of 1,328,890 sq. mi. Tarawa, the most inhabited of the islands peaks at around 3 m above sea level. I went to Kiribati in part to meet with Dr Teweiariki Teaero, a renowned scholar, poet and educator who had directed the Oceania Center at the University of the South Pacific in Fiji for many years before returning to his homeland where at the time he had been planning on running for government. Teweiariki spoke with me at length about the status of Kiribati as one of the already most critically affected frontline nations. I asked him what was a lesson for non-Pacific Islanders to learn about understanding everyday life there. He said to me “Two ears, one mouth, don’t talk too much. Learn to listen more. Not only to hear, but to be able to develop another thing and that is to be able to interpret. These things are different, they occur at different levels. The hearing and the interpretation of the sound…it’s very much part of our world” (Teaero 2018).
series ACADIA
type keynote
email
last changed 2024/04/17 14:00

_id ecaade2018_219
id ecaade2018_219
authors Bai, Nan, Ye, Wenqia, Li, Jianan, Ding, Huichao, Pienaru, Meram-Irina and Bunschoten, Raoul
year 2018
title Customised Collaborative Urban Design - A Collective User-based Urban Information System through Gaming
doi https://doi.org/10.52842/conf.ecaade.2018.1.419
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 419-428
summary As we step into a new data-based information age, it is important to get citizens involved in the whole design process. Our research tries to build up a user-based urban information system by collecting the data of neighborhood land use preference from all the residents through gaming. The result of each individual decision will be displayed in real time using Augmented Reality technology, while the collective decision dataset will be stored, analyzed and learnt by computer, forming an optimal layout that meets the highest demand of the community. A pre-experiment has been conducted in a. an abstract virtual site and b. an existing site by collecting opinions from 122 participants, which shows that the system works well as a new method for collaborative design. This system has the potential to be applied both in realistic planning processes, as a negotiation toolkit, and in virtual urban forming, in the case of computer games or space colonization.
keywords Collaborative Design; Customization; Urban Design; Gaming; Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_403
id ecaade2018_403
authors Coraglia, Ugo Maria, Wurzer, Gabriel and Fioravanti, Antonio
year 2018
title ORe – A simulation model for Organising Refurbishments
doi https://doi.org/10.52842/conf.ecaade.2018.2.605
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 605-610
summary The problem of interferences due to the refurbishing activities of a complex building, carried out in parallel with the daily activities that characterize it, is not to be underestimated, especially when talking about a hospital structure. Consequently, the benefits that would be obtained by reducing the presence of construction activities result important in terms of safety and health of users, above all hospital patients. Setting the best solution of Gantt in the early stages of planning can be a winning strategy, as well as being able to recognize the safest and fastest path (e.g. predicting which is the fastest way to reach the rooms taken into consideration by the refurbishment). At the same time, being able to check which activities are most penalized by the presence of the construction site and to set which are essential for the survival of the activities that characterize the environment to be refurbished, e.g. the hospital ward, is a valid support tool for the healthcare staff. The proposed tool aims, on the one hand, to help designers by proposing the best possible Gantt solutions in relation to the management of daily activities that can not be suspended and on the other hand to support healthcare staff in the organization of these latter.
keywords Refurbishment; Complex building; Construction site; Space syntax; Bubble diagram; Gantt
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2018_402
id ecaade2018_402
authors Ron, Gili, Shallaby, Sara and Antonako, Theofano
year 2018
title On-Site Fabrication and Assembly for Arid Region Settlements
doi https://doi.org/10.52842/conf.ecaade.2018.1.801
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 801-810
summary With fast growing population rates and the further desertification of the global climate, desert regions, covering one fifth of the world's surface, provide an opportunity for future habitats. However, their extreme climatic conditions and remoteness pose a planning challenge, currently addressed with prefabrication and layered design; wasteful and costly solutions. This article proposes a bespoke design, fabrication and assembly process: performed in-situ with using local resources and novel automation. The research addresses challenges in on-site robotic forming and assembly of mono-material discrete elements, made in waterless concrete of sand-Sulphur composite. The formed components are examined in formwork-free assembly of wall and arch, with Pick & Place tool-path. The component's design incorporates topological and osteomorphic interlocking, facilitating structural integrity, as well as self-shading and passive cooling, to fit with local climate. This work culminates in a design proposal for constructing desert habitats, climatically adapted for Zagora oasis in the Moroccan Sahara: a remote site of hyper-arid climate.
keywords Material System; Vernacular Architecture; Digital Morphogenesis; Topological Interlocking; Robotic Fabrication; Robotic Assembly
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_274
id ecaade2018_274
authors Stojanovski, Todor
year 2018
title City Information Modelling (CIM) and Urban Design - Morphological Structure, Design Elements and Programming Classes in CIM
doi https://doi.org/10.52842/conf.ecaade.2018.1.507
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 507-516
summary In architecture, there was an evolution from Computer-Aided Design (CAD) to Building Information Modelling (BIM), but in urban planning and design, where the Geographic Information Systems (GIS) are often used, there is no such analogy. This paper reviews research in typo-morphology, a branch of urban morphology, procedural modelling of buildings and cities and 3D city modelling and visualizations. It present a generic morphological structure of urban elements and discusses them as programming classes in City Information Modelling (CIM) and the application of CIM in urban design practice. Urban design can be understood as art of juxtaposing and arranging urban design elements such as streets, sidewalks, buildings, building façades, landscaping, etc. Designing implies experimentation and play for design elements within design worlds. CIM should integrate procedural modelling, urban morphological research with toolboxes of design elements and rules of combinations. CIM should serve as digital design worlds where urban designers can play with design elements, model and analyse urban scenarios with generative procedures, rules and typological processes.
keywords City Information Modelling (CIM); urban morphology; morphological structure; urban design; design element; programming classes
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_101
id ecaadesigradi2019_101
authors Tebaldi, Isadora, Henriques, Gonçalo Castro and Passaro, Andres Martin
year 2019
title A Generative System for the Terrain Vague - Transcarioca Bus Expressway in Rio de Janeiro
doi https://doi.org/10.52842/conf.ecaade.2019.1.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary The transport infrastructures are important elements in the cities, but, as there is a lack of planning, they tear through the urban fabric and leave empty spaces. Due to government and private disinterest, these spaces become vacant, forgotten and degraded. However, these extensive Terrain Vague offer new potential for urban use. To exploit this potential, we need methodologies that can offer personalised, extensive, feasible urban solutions. For this, we propose a computational generative system, following a 4-step methodology: 1) Site analyses and Terrain Vague identification; 2) Site classification according to parameters based on a "visual grammar"; 3) Algorithm associating space properties with geometric transformation to generate solutions: namely transformative operations in public spaces, additive transformations in semi-public spaces and subtractive operations in semi-private spaces; 4) Solution evaluation and development, according to shade criteria, spatial hierarchy and volumetric density. With our own algorithms combined with genetic algorithms, we guided the evolution of 50 volumetric solutions. The exponential increase in information requires new methodologies (Schwab, 2018). Results show the potential of computational methodologies to produce extensive urban solutions. This research, developed in a final graduation project in Architecture, aims at stimulating generative methodologies in undergraduate courses.
keywords Terrain Vague; generative systems; parametric urbanism; genetic algorithms
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ecaade2018_163
id ecaade2018_163
authors Hadighi, Mahyar and Duarte, Jose
year 2018
title Adapting Modern Architecture to a Local Context - A Grammar for Hajjar’s Hybrid Domestic Architecture
doi https://doi.org/10.52842/conf.ecaade.2018.2.515
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 515-524
summary The purpose of this study is to analyze Abraham William Hajjar's single-family houses in State College, PA, using shape grammar as a computational design methodology. Hajjar was a member of the architecture faculty at the Pennsylvania State College (now The Pennsylvania State University), a practitioner in State College, and an influential figure in the history of architecture in the area. In this study, shape grammars are used specifically to verify and describe influences of modern architecture, as defined by Hitchcock and Johnson (1932), and influences of local traditional American architecture on Hajjar's domestic architecture. The underlying hypothesis is that Hajjar's work is the result of a hybridity phenomenon that can be traced through a computational design methodology. The first step in this endeavor and the study focus is to establish Hajjar's single-family architectural language. Future work will be concerned with verifying and describing the hybridity between modern architecture and traditional architecture expressed in Hajjar's work by comparing his grammar with grammars underlying modern and traditional architecture likewise.
keywords shape grammar; modern architecture ; American architecture; William Hajjar; hybridity; single-family houses
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaaderis2018_115
id ecaaderis2018_115
authors Hadighi, Mahyar and Duarte, Jose
year 2018
title Local Adaptation of Modern Architecture - A Grammar for Hajjar’s Domestic Architecture
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 15-20
keywords The purpose of this study is to analyze Abraham William Hajjar's single-family houses in State College, PA, using shape grammar as a computational design methodology. Hajjar was a member of the architecture faculty at the Pennsylvania State College (now The Pennsylvania State University), a practitioner in State College and an influential figure in the history of architecture in the area. Shape grammars are used specifically to verify and describe the influences of modern architecture as defined by Hitchcock and Johnson (1932) and traditional American architecture in the area on Hajjar's domestic architecture. The underlying hypothesis is that the work of Hajjar is the result of a hybridity phenomenon that will be traced through a computational design methodology. The first step in this endeavor is to establish the single-family architectural language of Hajjar, which is briefly described in this paper. Future steps will aim at verifying and describing the hybridity between modern architecture and traditional architecture in his work by comparing Hajjar's grammar with grammars encoding modern and traditional architecture.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_343
id caadria2018_343
authors Kalantar, Negar and Borhani, Alireza
year 2018
title Informing Deformable Formworks - Parameterizing Deformation Behavior of a Non-Stretchable Membrane via Kerfing
doi https://doi.org/10.52842/conf.caadria.2018.2.339
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 339-348
summary The process for constructing freeform buildings composed of many non-repetitive shapes and waste-free formwork systems remains relatively unexplored. This research reviews a method for fabricating complex double-curved shapes without utilizing single-use formworks. This work answers questions regarding the manufacturing of these shapes in an environmentally-friendly and economic fashion. The proposed method, called a "transformative formwork," could replace state-of-the-art CNC-milled molds and is potentially suitable for large-scale construction. The transformative formwork uses a stretchable membrane or "interpolation layer" that can be manipulated into any curved surface by using vertical bars capable of being rearranged into different heights. Here, to accurately generate most of the smooth, double-curved surfaces, laser kerfing is used for bending interpolation layer into almost any complex shape. A parametric model simplifies local or global changes to the density of the kerfing patterns, modifying the deformation behavior of the layer. Several kerfed interpolation layers produced for four transformative formworks showed that the application of this method.
keywords Transformative Formwork, Interpolation Layer, Relief-cut Patterns, Positive & Negative Gaussian Curvatures, Interlocking Archimedean Spiral-Patterns, Kerfing
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia18_146
id acadia18_146
authors Rossi, Gabriella; Nicholas, Paul
year 2018
title Re/Learning the Wheel. Methods to Utilize Neural Networks as Design Tools for Doubly Curved Metal Surfaces
doi https://doi.org/10.52842/conf.acadia.2018.146
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 146-155
summary This paper introduces concepts and computational methodologies for utilizing neural networks as design tools for architecture and demonstrates their application in the making of doubly curved metal surfaces using a contemporary version of the English Wheel. The research adopts an interdisciplinary approach to develop a novel method to model complex geometric features using computational models that originate from the field of computer vision.

The paper contextualizes the approach with respect to the current state of the art of the usage of artificial neural networks both in architecture and beyond. It illustrates the cyber physical system that is at the core of this research, with a focus on the employed neural network–based computational method. Finally, the paper discusses the repercussions of these design tools on the contemporary design paradigm.

keywords full paper, ai & machine learning, digital craft, robotic production, computation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_172
id ecaade2018_172
authors Al-Douri, Firas
year 2018
title The Employment of Digital Simulation in the Planning Departments in US Cities - How does it affect design and decision-making processes?
doi https://doi.org/10.52842/conf.ecaade.2018.2.539
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 539-548
summary The increased interactivity of digital simulation tools has offered a wide range of opportunities that may provoke a paradigmatic shift in urban design practice. Yet, research results did not provide any clear evidence that such shift seems to exist. Further studies are required to examine the methods and impact of their usage on decision-making and design outcome. To that goal, this research uses the single-case study design that has been pursued in three phases: literature review, online survey, and semi-structured interviews. The results have shown inadequacies, inconsistency, and ineffectiveness of usage of the tools that are most appropriate to the design activities of each phase and thus a limited impact on critical areas of the decision-making. The impact of the tools' usage is found to be correlated with not only the extent of their usage, but also with a variety of procedural and substantive factors such as the plan methodology, extent of tool's usage, choice of the appropriate tool, and planners' skills and capabilities in using those tools.
keywords Urban Simulation ; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
doi https://doi.org/10.52842/conf.caadria.2019.2.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
doi https://doi.org/10.52842/conf.caadria.2018.2.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_296
id ecaade2018_296
authors Czyñska, Klara
year 2018
title High Precision Visibility and Dominance Analysis of Tall Building in Cityscape - On a basis of Digital Surface Model
doi https://doi.org/10.52842/conf.ecaade.2018.1.481
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 481-488
summary The article presents a methodology applied for the assessment of the tall building visual impact on the city scape, using digital tools. The method has been used by the author in the planning practice in several cities in Poland. It enables to determine not only the visibility range of a planned tall building in the city spaces, but also the extent to which it dominates. Findings are presented in a map which reflects both parameters applicable to a given facility. Computation of findings is based on the model of a city consisting of a regular cloud of points (Digital Surface Model) of high quality and dedicated C++ software (developed in cooperation with author). The Visual Impact Size (VIS) method supports the process of conservation and landscaping, in particular in historical cities. It helps predicting spatial implications tall buildings may have. It may also be used for comprehensive development of a modern skyline with tall buildings as a harmonious component of the cityscape. The method is presented using the case study of the Hanza Tower building in Szczecin (Poland).
keywords digital cityscape analysis; tall buildings; visual impact; Visual Impact Size method; viewshed; Hanza Tower in Szczecin
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_433
id ecaade2018_433
authors Daher, Elie, Kubicki, Sylvain and Pak, Burak
year 2018
title Participation-based Parametric Design in Early Stages - A participative design process for spatial planning in office building
doi https://doi.org/10.52842/conf.ecaade.2018.1.429
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 429-438
summary The term participation has been used to define different activities, such as civil debate, communication, consultation, delegation, self-help construction, political decisions. However, participation in design started from the idea that individuals whom being affected by a design project must contribute to the design process. Recently, designers have been moving closer to the future users and developing new ways to empower them to get involved in the design process. In this paper we rethink the way the early design process is developed in a participatory approach thanks to parametric methods. A use case is proposed showing the potential of parametric design methods to empower the participation of users in the design of their facilities. The use case is dealing in particular with the spatial planning of an office building where the users together with the spatial planning team are able to design the layout spatial configuration by 1) fixing the objectives, 2) manipulating the model, 3)modifying some parameters, 4) visualizing the iterations and evaluating in a real-time each solution in an interactive 3D environment and together with facility managers 5) choosing the configuration of the spatial layout.
keywords Computational design; Participatory design; Optimization ; Parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_329
id ecaade2018_329
authors De Luca, Francesco, Nejur, Andrei and Dogan, Timur
year 2018
title Facade-Floor-Cluster - Methodology for Determining Optimal Building Clusters for Solar Access and Floor Plan Layout in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2018.2.585
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 585-594
summary Daylight standards are one of the main factors for the shape and image of cities. With urbanization and ongoing densification of cities, new planning regulations are emerging in order to manage access to sun light. In Estonia a daylight standard defines the rights of light for existing buildings and the direct solar access requirement for new premises. The solar envelope method and environmental simulations to compute direct sun light hours on building façades can be used to design buildings that respect both daylight requirements. However, no existing tool integrates both methods in an easy to use manner. Further, the assessment of façade performance needs to be related to the design of interior layouts and of building clusters to be meaningful to architects. Hence, the present work presents a computational design workflow for the evaluation and optimisation of high density building clusters in urban environments in relation to direct solar access requirements and selected types of floor plans.
keywords Performance-driven Design; Urban Design; Direct Solar Access; Environmental Simulations and Evaluations; Parametric Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_292
id ecaade2018_292
authors Dennemark, Martin, Aicher, Andreas, Schneider, Sven and Hailu, Tesfaye
year 2018
title Generative Hydrology Network Analysis - A parametric approach to water infrastructure based urban planning
doi https://doi.org/10.52842/conf.ecaade.2018.2.327
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 327-334
summary Urban water systems need to be dimensioned well to be economical and distribute water in a good quality to all consumers. Their pipe sizes are dependent on demand and location of consuming nodes. Within uncertain development of cities, planning sustainable hydraulic networks is challenging. This paper explores, how the definition of urban design parameters can be supported using parametric urban design models and computational water network analysis. For the latter we developed new components for Grasshopper based on the open accessible water analysis tool EPANET. In two example cases we demonstrate potential applications of this tool for water-sensitive planning of emerging cities to find optimal positions for water sources or pipe diameters. In subsequent research, this could be used to derive probability-based recommendations for the dimensioning of a water network within uncertain growth.
keywords water infrastructure; urban planning; parametric design; uncertainty; emerging cities
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_398
id ecaadesigradi2019_398
authors Fink, Theresa and Koenig, Reinhard
year 2019
title Integrated Parametric Urban Design in Grasshopper / Rhinoceros 3D - Demonstrated on a Master Plan in Vienna
doi https://doi.org/10.52842/conf.ecaade.2019.3.313
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 313-322
summary By 2050 an estimated 70 percent of the world's population will live in megacities with more than 10 million citizens (Renner 2018). This growth calls for new target-oriented, interdisciplinary methods in urban planning and design in cities to meet sustainable development targets. In response, this paper exemplifies an integrated urban design process on a master plan project in Vienna. The objective is to investigate the potential towards a holistic, digital, urban design process aimed at the development of a practical methodology for future designs. The presented urban design process includes analyses and simulation tools within Rhinoceros 3D and its plug-in Grasshopper as quality-enhancing mediums that facilitate the creative approaches in the course of the project. The increase in efficiency and variety of design variants shows a promising future for the practical suitability of this approach.
keywords urban design; parametric modeling; urban simulation; design evaluation; environmental performance
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_120428 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002