CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
doi https://doi.org/10.52842/conf.acadia.2018.366
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2018_1389
id sigradi2018_1389
authors Capone, Mara; Lanzara, Emanuela
year 2018
title Kerf bending: ruled double curved surfaces manufacturing
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 653-660
summary Knowledge of geometric properties of surfaces is crucial for resolution of many manufacturing problems. Developability is an important feature of a surface that allows its manufacture from a flat "strip" of a "flexible" and "non-deformable" material. Digital fabrication technologies and parametric design tools, based on knowledge of geometry, are changing designer way to think. Our research in the field of non-developable surfaces fabrication move from paneling to "kerfing". This technique allows to transform a rigid material in a flexible one. The main problem to solve is how to cut the flat shape to obtain the design surface.
keywords Non-developable surfaces; Developable surfaces; Shape grammar; Parametric design; Kerfing
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_343
id caadria2018_343
authors Kalantar, Negar and Borhani, Alireza
year 2018
title Informing Deformable Formworks - Parameterizing Deformation Behavior of a Non-Stretchable Membrane via Kerfing
doi https://doi.org/10.52842/conf.caadria.2018.2.339
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 339-348
summary The process for constructing freeform buildings composed of many non-repetitive shapes and waste-free formwork systems remains relatively unexplored. This research reviews a method for fabricating complex double-curved shapes without utilizing single-use formworks. This work answers questions regarding the manufacturing of these shapes in an environmentally-friendly and economic fashion. The proposed method, called a "transformative formwork," could replace state-of-the-art CNC-milled molds and is potentially suitable for large-scale construction. The transformative formwork uses a stretchable membrane or "interpolation layer" that can be manipulated into any curved surface by using vertical bars capable of being rearranged into different heights. Here, to accurately generate most of the smooth, double-curved surfaces, laser kerfing is used for bending interpolation layer into almost any complex shape. A parametric model simplifies local or global changes to the density of the kerfing patterns, modifying the deformation behavior of the layer. Several kerfed interpolation layers produced for four transformative formworks showed that the application of this method.
keywords Transformative Formwork, Interpolation Layer, Relief-cut Patterns, Positive & Negative Gaussian Curvatures, Interlocking Archimedean Spiral-Patterns, Kerfing
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_414
id ecaade2018_414
authors Liapi, Katherine and Papantoniou, Andreana
year 2018
title Square Tessellation Patterns on Double Layer Minimal Surface Structures - Geometric Investigation and Design Algorithms
doi https://doi.org/10.52842/conf.ecaade.2018.2.385
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 385-390
summary Minimal surfaces, defined as surfaces of the smallest area spanned by a given boundary present advantages for architectural applications in terms of their structural and material performance. Therefore, the investigation of their properties including their geometric ones deserve special attention. In this regard, methods for tessellating minimal surfaces need to be studied. In this paper, patterns that consist of four squares with partly overlapping sides have been considered. A constrain in this study was the square tiles maintained their planarity. Three different types of surfaces have been considered, namely the helicoid, catenoid and Enneper's surface. Design algorithms that generate tiling patterns in all three minimal surface types have been developed and are presented in the paper. The geometric investigation of the application of the developed methods to double layer structures has also been examined and discussed in the paper. Finally, the accuracy of the developed algorithms has been tested through the construction of a physical model.
keywords minimal surfaces; double layer; square tessellation
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia18_312
id acadia18_312
authors Ariza, Inés; Mirjan, Ammar; Gandia, Augusto; Casas, Gonzalo; Cros, Samuel; Gramazio, Fabio; Kohler, Matthias.
year 2018
title In Place Detailing. Combining 3D printing and robotic assembly
doi https://doi.org/10.52842/conf.acadia.2018.312
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 312-321
summary This research presents a novel construction method that links robotic assembly and in place 3D printing. Rather than producing custom joints in a separate prefabrication process, our approach enables creating highly customized connection details that are 3D printed directly onto off-the-shelf building members during their assembly process. Challenging the current fashion of highly predetermined joints in digital construction, detailing in place offers an adaptive fabrication method, enabling the expressive tailoring of connection details addressing its specific architectural conditions. In the present research, the in place detailing strategy is explored through robotic wire arc additive manufacturing (WAAM), a metal 3D printing technique based on MIG welding. The robotic WAAM process coupled with localization and path-planning strategies allows a local control of the detail geometry enabling the fabrication of customized welded connections that can compensate material and construction tolerances. The paper outlines the potential of 3D printing in place details, describes methods and techniques to realize them and shows experimental results that validate the approach.
keywords work in progress, fabrication & robotics, robotic production, materials/adaptive systems, architectural detailing
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia22pr_124
id acadia22pr_124
authors Ago, Viola; Tursack, Hans
year 2022
title Understorey - A Pavilion in Parts
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 124-129.
summary In the summer of 2018, our collaboration was awarded a University Design Fellowship from the Exhibit Columbus organization to design, fabricate, and build a large pavilion in Columbus, Indiana as part of a biannual contemporary architecture exhibition. Our proposal for the competition was a pavilion that would double as an ecological education center. Our inspiration for this program was triggered in part by our reading of Jane Bennett’s materialist philosophy outlined in her book Vibrant Matter (2009). Through Bennett’s lens, our design rendered our site’s context as an animate field, replete with pre-existing material composites that we wanted to celebrate through a series of displays, information boards, and artificial lighting. In this, the installation would feature samples of local plants, minerals, and rocks, indigenous to Southern Indiana.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2018_1609
id sigradi2018_1609
authors Chia, Hsu Yi; Hsien, Hsu Pei
year 2018
title The fabrication and application of parametric inflatable structure
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 684-689
summary This study uses parametric design to optimize the process and application of the inflatable method. Inflatable design has advantages of light weight, integral forming, volume change, etc., but the manufacturing process often requires the development of molds, a large number of manual heat seals, etc. Inspired by the structure principle of amputated wing tube structure, coupled with the advantages of parameterization and digital tool heat sealing, The same material can be made at different tightness, because the tight design with different angles has more structural characteristics and bending properties, thereby generating more complex spatial structures. Different materials also have corresponding manufacturing methods, which also increase the opportunities for application in architectural design.
keywords Robotic arms fabrication; Inflatable Shape-change; pneumatic; bending mechanism; pavilion design;
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_344
id ecaade2018_344
authors El-Gewely, Noor, Wong, Christopher, Tayefi, Lili, Markopoulou, Areti, Chronis, Angelos and Dubor, Alexandre
year 2018
title Programming Material Intelligence Using Food Waste Deposition to Trigger Automatic Three-Dimensional Formation Response in Bioplastics
doi https://doi.org/10.52842/conf.ecaade.2018.2.271
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 271-278
summary Bioplastics are by their very nature parametric materials, programmable through the selection of constituent components and the ratios in which they appear, and as such present significant potential as architectural building materials for reasons beyond sustainability and biodegradability. This paper presents a system through which rigid three-dimensional doubly curved hyperbolic paraboloid shapes are automatically formed from two-dimensional sheet casts by harnessing the inherent flexibility and expressiveness of bioplastics. The system uses a gelatin-based bioplastic supplemented with granular organic matter from food waste in conjunction with a split-frame casting system that enables the self-formation of three-dimensional geometries by directing the force of the bioplastic's uniform contraction as it dries. By adjusting the food waste added to the bioplastic, its properties can be tuned according to formal and performative needs; here, dehydrated granulated orange peel and dehydrated spent espresso-ground coffee are used both to impart their inherent characteristics and also to influence the degree of curvature of the resulting bioplastic surfaces. Multi-material casts incorporating both orange peel bioplastic and coffee grounds bioplastic are shown to exert a greater influence over the degree of curvature than either bioplastic alone, and skeletonized panels are shown to exhibit the same behavior as their solid counterparts. Potential developments of the technology so as to gain greater control of the curvature performance, particularly in the direction of computer-controlled additive manufacturing, are considered, as is the potential of application in architectural scale.
keywords Bioplastics; Composites; Fabrication; Materials
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_339
id ecaade2018_339
authors Fereos, Pavlos, Tsiliakos, Marios and Jaschke, Clara
year 2018
title Spaceship Tectonics - Design Computation Pedagogy for Generative Sci-Fi Building Skins
doi https://doi.org/10.52842/conf.ecaade.2018.2.357
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 357-366
summary Sci-Fi architecture, both as digital or physical representations, despite their inherent intricacy, lack the spatial depth of a structured interior, material definition or program information. This discrepancy, combined with the plethora of available sci-fi motifs, inspired the development of an integrated teaching approach with the academic objective to utilize computational methods for analysis, reproduction and composition of generative building skins, and consequently architecture, which aims to be 'outside of this world' as a sci-fi design quality-enriched result of our reality. The proposed methodology is implemented at the Spaceship Architecture Design Studio at the University of Innsbruck. Its capacity to achieve a successful assimilation of design computation in the curriculum is subsequently assessed by the documentation and quantitative/qualitative evaluation of the designs developed during two academic years, in line with a generative facade articulation schema, without however undermining the rest of the virtues of tectonic spaces. The introduction of a theme like sci-fi where the design objective is not clearly defined, is examined in comparison to similar approaches, towards the corroboration of the pedagogical method proposed.
keywords Pedagogy; Computation; Facade Design; Generative; Sci-Fi; Patterns
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac201816204
id ijac201816204
authors Gengnagel, Christoph; Riccardo La Magna, Mette Ramsgaard Thomsen and Martin Tamke
year 2018
title Shaping hybrids – Form finding of new material systems
source International Journal of Architectural Computing vol. 16 - no. 2, 91-103
summary Form-finding processes are an integral part of structural design. Because of their limitations, the classic approaches to finding a form – such as hanging models and the soap-film analogy – play only a minor role. The various possibilities of digital experimentation in the context of structural optimisation create new options for the designer generating forms, while enabling control over a wide variety of parameters. A complete mapping of the mechanical properties of a structure in a continuum mechanics model is possible but so are simplified modelling strategies which take into account only the most important properties of the structure, such as iteratively approximating to a solution via representations of kinematic states. Form finding is thus an extremely complex process, determined both by the freely selected parameters and by design decisions.
keywords Bending active, form finding, hybrid structures, simulation, textile architecture
series journal
email
last changed 2019/08/07 14:03

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2019_665
id caadria2019_665
authors Jin, Jinxi, Han, Li, Chai, Hua, Zhang, Xiao and Yuan, Philip F.
year 2019
title Digital Design and Construction of Lightweight Steel-Timber Composite Gridshell for Large-Span Roof - A Practice of Steel-timber Composite Gridshell in Venue B for 2018 West Bund World AI Conference
doi https://doi.org/10.52842/conf.caadria.2019.1.183
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 183-192
summary Timber gridshell is an efficient structural system. However, the feature of double curved surface result in limitation of practical application of timber gridshell. Digital technology provides an opportunity to break this limitation and achieve a lightweight free-form gridshell. In the practice of Venue B for 2018 West Bund World AI Conference, architects and structural engineers cooperated to explore innovative design of lightweight steel-timber composite gridshell with the help of digital tools. Setting digital technology as support and restrains of the project as motivation, the design tried to achieve the realization of material, structure, construction and spatial expression. The digital design and construction process will be discussed from four aspects, including form-finding of gridshell surface, steel-timber composite design, digital detailed design and model-based fabrication and construction. We focuses on the use of digital tools in this process, as well as the role of the design subject.
keywords Timber Gridshell; Steel-timber Composite; Digital Design and Construction; Lightweight Structure; Large-span Roof
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_260
id ecaade2018_260
authors Kallegias, Alexandros
year 2018
title Design by Computation - A material driven study
doi https://doi.org/10.52842/conf.ecaade.2018.2.279
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 279-284
summary The paper aims to address methods of creating a system for design through material studies that are employed as feedback on a computational digital model. The case study described in this paper is the output of an exploration that has investigated physical transformation, interaction and wood materiality over the period of two weeks of the international architecture programme AA Athens Visiting School in Greece. Real-time performative form-responsive methods based on bending and stretching have been developed and simulated in an open-source programming environment. The output of the simulation has been informed by the results of material tests that took place in parallel and have served as inputs for the fine-tuning of the simulation. Final conclusions were made possible from these explorations that enabled the fabrication of a prototype using wood veneer at one-to-one scale. From a pedagogical aspect, the research main focus is to improve the quality of architectural education by learning through making. This is made possible using advanced computational techniques and coupling them with material studies towards an integrated system for architectural prototypes within a limited time frame.
keywords materiality; computation; 1:1 scale prototyping; simulation; fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia18_322
id acadia18_322
authors Klemmt, Christoph; Gheorghe, Andrei; Pantic, Igor; Hornung, Philipp; Sodhi, Rajat
year 2018
title Engineering Design Tropisms. Utilization of a bamboo-resin joint for voxelized network geometries
doi https://doi.org/10.52842/conf.acadia.2018.322
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 322-327
summary We propose the combination of the traditional construction material bamboo with a novel epoxy-resin joint. The joint forms a bending-resisting connection that eliminates the need for diagonal members. This allows its utilization along rectangular grids as was tested with the design of a prototype structure that occupies a voxelized space. The design process used an agent-based simulation to mediate between design intent, site and structural considerations. The prototype was constructed with a robotic milling of the components and forms a successful application of the joints and design methodology.
keywords work in progress, digital fabrication, digital materials, robotic production, fabrication & robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaade2018_233
id ecaade2018_233
authors Kontiza, Iacovina, Spathi, Theodora and Bedarf, Patrick
year 2018
title Spatial Graded Patterns - A case study for large-scale differentiated space frame structures utilising high-speed 3D-printed joints
doi https://doi.org/10.52842/conf.ecaade.2018.2.039
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 39-46
summary Geometric differentiation is no longer a production setback for industrial grade architectural components. This paper introduces a design and fabrication workflow for non-repetitive large-scale space frame structures composed of custom-manufactured nodes, which exploits the advantages of latest advancements in 3D-printing technology. By integrating design, fabrication and material constraints into a computational methodology, the presented approach addresses additive manufacturing of functional industry-grade parts in short time, high speed and low cost. The resulting case study of a 4.5 x 4.5 x 2.5 m lightweight kite structure comprises 1380 versatile fully-customised connectors and outlines the manifold potential of additive manufacturing for architecture much bigger than the machine built space. First, after briefly introducing space frames in architecture, this paper discusses the computational framework of generating irregular space frames and parametric joint design. Second, it examines the advantages of MJF printing in conjunction with integrating smart sequencing details for the following assembly process. Finally, a conclusive outlook is given on improvements and further developments for bespoke 3D-printed space frame structures.
keywords 3D-printing; Multi-Jet Fusion; Space Frame; Graded Subdivision
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia20_164p
id acadia20_164p
authors Lange, Christian; Ratoi, Lidia; Co Lim, Dominic; Hu, Jason; Baker, David M.; Yu, Vriko; Thompson, Phil
year 2020
title Reformative Coral Habitats
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 164-169
summary Coral reefs are some of the most diverse ecologies in the marine world. They are the habitat to tens of thousands of different marine species. However, these wildlife environments are endangered across the globe. Recent research estimates that around 75 percent of the remaining coral reefs are currently under threat. In 2018 after a devastating storm, Hong Kong lost around 80% of its existing corals. Consequently, a team consisting of marine biologists and architects at The University of Hong Kong has developed a series of performative structures that have been deployed in the city's waters in July 2020, intending to aid new coral growth over the coming years. The project was commissioned by the Agriculture, Fisheries, and Conservation Department (AFCD) and is part of an ongoing active management measure for coral restoration in Hoi Ha Wan Marine Park in Hong Kong. The following objectives were defined as part of the design and fabrication research of the project. To develop a design strategy that builds on the concept of biomimicry to allow for complex spaces to occur that would provide attributes against the detachment of the inserted coral fragment, hence could enhance a diverse marine life specific to the context of the cities water conditions. To generate an efficient printing path that accommodates the specific morphological design criteria and ensures structural integrity and the functional aspects of the design. To develop an efficient fabrication process with a DIW 3D printing methodology that considers warping, shrinkage, and cracking in the clay material. The research team developed a method that combined an algorithmic design approach for the design of different geometries with a digital additive manufacturing process utilizing robotic 3D clay printing. The overall fabrication strategy for the complex and large pieces sought to ensure structural longevity, optimize production time, and tackle the involved double-sided printing method. Overall, 128 tiles were printed, covering roughly 40sqm of the seabed.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia18_358
id acadia18_358
authors Lara Ditzel, Patricio; Balas, Leonard; Kalina, Olga; Vasey, Lauren; Bechert, Simon; Krieg ,Oliver David; Menges, Achim; Knippers, Jan
year 2018
title Integrative Fabrication of Sandwich Shells. An integrative approach to design of robotically fabricated wood- based sandwich segmented shells
doi https://doi.org/10.52842/conf.acadia.2018.358
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 358-365
summary This paper presents the development of an integrative and adaptive robotic fabrication process for the production of wooden-based segmented shells of variable thickness. A material and construction process is presented whereby an industrial robot with a two-degree of freedom end-effector acts as active form-work, positioning flexible strips of plywood so they can be assembled into a structurally performative configuration and then filled with a polyurethane expandable foam. The resulting material system is a structurally performative and doubly curved sandwich composite which performs well in bending. This paper discusses the construction process and the material system, methods for structural analysis, an adaptive robotic fabrication process, as well as a computational design tool which integrates material constraints, robotic constraints, and structural performance. The resulting construction system expands the design possibilities for robotic fabrication in wood, particularly as a viable material system for implementation directly in an on-site condition.
keywords work in progress, fabrication & robotics, materials & adaptive systems
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id caadria2018_083
id caadria2018_083
authors Luo, Dan, Wang, Jinsong and Xu, Weiguo
year 2018
title Robotic Automatic Generation of Performance Model for Non-Uniform Linear Material via Deep Learning
doi https://doi.org/10.52842/conf.caadria.2018.1.039
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 39-48
summary In the following research, a systematic approach is developed to generate an experiment-based performance model that computes and customizes properties of non-uniform linear materials to accommodate the form of designated curve under bending and natural force. In this case, the test subject is an elastomer strip of non-uniform sections. A novel solution is provided to obtain sufficient training data required for deep learning with an automatic material testing mechanism combining robotic arm automation and image recognition. The collected training data are fed into a deep combination of neural networks to generate a material performance model. Unlike most traditional performance models that are only able to simulate the final form from the properties and initial conditions of the given materials, the trained neural network offers a two-way performance model that is also able to compute appropriate material properties of non-uniform materials from target curves. This network achieves complex forms with minimal and effective programmed materials with complicated nonlinear properties and behaving under natural forces.
keywords Material performance model; Deep Learning; Robotic automation; Material computation; Neural network
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_490700 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002