CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
doi https://doi.org/10.52842/conf.caadria.2018.2.165
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia18_342
id acadia18_342
authors Wu, Kaicong; Kilian, Axel
year 2018
title Robotic Equilibrium: Scaffold Free Arch Assemblies
doi https://doi.org/10.52842/conf.acadia.2018.342
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 342-349
summary Compression only arch structures are structurally highly efficient in force equilibrium. However, the material efficiency is offset by the traditional use of scaffolds to position materials and counter the out of equilibrium forces during assembly. We introduce a method of sequentially assembling compression only structures without a scaffold by robotically maintaining the compression equilibrium in every step. A two-arm collaborative robotic setup was used to maintain force equilibrium throughout arch assembly with the arms taking turns first hot wire cutting and placing blocks and providing a temporary scaffold to support the arch end point.

To test the approach, a single catenary arch was generated using form-finding techniques and sequentially built from foam blocks. Moving forward we show the relationship between the joint valence (largest number of joined branches) of a multi-branched structure and the minimum number of robotic arms required for assembly using our initial technique. With only two robotic arms available, the technique was further developed to reduce the required number of arms per arch branch from two to one by attaching caterpillar tracks at the block supporting end effector. This allows a human to load the next block and the arm to move forward along the arch while maintaining equilibrium. Results show that robotic equilibrium scaffold free arch assembly is possible and can reduce scaffold waste and maintain the material efficiency of compression only structures. Future work will explore further applications of assistive robotics in construction replacing static construction aids with dynamic sensory feedback of equilibrium forces.

keywords work in progress, collaborative sequential assembly, robotic equilibrium, compression only structures, form finding
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2018_389
id ecaade2018_389
authors Algeciras-Rodriguez, Jose
year 2018
title Stochastic Hybrids - From references to design options through Self-Organizing Maps methodology.
doi https://doi.org/10.52842/conf.ecaade.2018.1.119
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 119-128
summary This ongoing research aims to define a general assisted design method to offer non-trivial design options, where form is produced by merging characteristics from initial reference samples collection that serves as an input set. This project explores design processes laying on the use of non-linear procedures and experiments with Self-Organizing Map (SOM), as neural networks algorithms, to generate geometries. All processes are applied to a set of models representing classic sculpture, whose characteristics are encoded by the SOM process. The result of it is a set of new geometry resembling characteristics from the original references. This method produces hybrid forms that acquire characteristics from several input references. The resulting hybrid entities are intended to be non-trivial solutions to specific design situations, so far, at the stage of this research, mainly formal requirements.
keywords Self-Orgnizing Maps; Cognitive Space; Design Options; Form Finding; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_124
id ecaade2018_124
authors Asanowicz, Aleksander
year 2018
title Digital Architectural Composition in Virtual Space
doi https://doi.org/10.52842/conf.ecaade.2018.2.703
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 703-710
summary The paper is divided into two main parts. The first part refers to the history of attempts to use VR technology in the process of architectural space creation in a dynamic way. The second part presents the experiment carried out at our Faculty, in which we implemented VR in the Digital Architectural Composition course. This experiment was divided into two parts. In the both parts Google Blocks software was used. In the first part we have used the first exercises which was completed by students during the first semester in a traditional way (a cardboard mock-up) and then in the third semester as a digital model in Cinema 4D. It was a Solid form with. In the second part of this experiment we asked students to create a sketch of walk through space and they can created their own shapes in their design. The analysis of the results allows to formulate the thesis that there is a qualitative revolution in the area of human-computer interface. The main conclusion is that Virtual Reality eliminates the boundaries between the spectator and the space and that the idea - Designing Become a Place" is still actual.
keywords Architectural composition; virtual reality; direct design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_132
id ecaade2018_132
authors Bialkowski, Sebastian
year 2018
title Topology Optimisation Influence on Architectural Design Process - Enhancing Form Finding Routine by tOpos Toolset utilisation
doi https://doi.org/10.52842/conf.ecaade.2018.1.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary The paper focuses on possibilities of already known engineering procedures such as Finite Element Method or Topology Optimisation for effective implementation in architectural design process. The existing attempts of complex engineering algorithms implementation, as a form finding approach will be discussed. By intersecting architectural form evaluation with engineering analysis complemented by optimisation algorithms, the new quality of contemporary architecture design process may appears.
keywords topology optimisation; design support tools; complex geometries; General Programing GPU; CUDA
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2018_130
id ecaade2018_130
authors Carl, Timo, Stepper, Frank and Schein, Markus
year 2018
title Solar Spline - Expanding on traditional sun-sail typologies and Frei Otto´s lightweight approach with the help of computational design procedures
doi https://doi.org/10.52842/conf.ecaade.2018.1.149
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 149-156
summary This paper presents the design and production processes of a real world organic photovoltaic lightweight installation realized at the University and School of Art, Kassel. It revisits thereby, Frei Otto´s lightweight principles to establish design criteria. Furthermore, we present the possibilities of computational procedures for the design of contemporary lightweight structures within a speculative design setting. Last, we illustrate the benefits of these tools for the design of lightweight structures and the role they played in re-conceptualizing traditional sun-sail typologies within an interdisciplinary student team.
keywords Lightweight Structures; Form-Finding; Computational Design; Interdisciplinary Collaboration
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia18_386
id acadia18_386
authors Chen, Canhui; Burry, Jane
year 2018
title (Re)calibrating Construction Simplicity and Design Complexity
doi https://doi.org/10.52842/conf.acadia.2018.386
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 386-393
summary Construction simplicity is crucial to cost control, however design complexity is often necessary in order to meet particular spatial performance criteria. This paper presents a case study of a semi-enclosed meeting pod that has a brief that must contend with the seemingly contradictory conditions of the necessary geometric complexities imperative to improved acoustic performance and cost control in construction. A series of deep oculi are introduced as architectural elements to link the pod interior to the outside environment. Their reveals also introduce sound reflection and scattering, which contribute to the main acoustic goal of improved speech privacy. Represented as a three-dimensional funnel like shape, the reveal to each opening is unique in size, depth and angle. Traditionally, the manufacturing of such bespoke architectural elements in many cases resulted in lengthy and costly manufacturing processes. This paper investigates how the complex oculi shape variations can be manufactured using one universal mold. A workflow using mathematical and computational operations, a standardized fabrication approach and customization through tooling results in a high precision digital process to create particular calculated geometries, recalibrated at each stage to account for the paradoxical inexactitudes and inevitable tolerances.
keywords work in progress,tolerance, developable surface, form finding, construction simplicity, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:55

_id acadia18_98
id acadia18_98
authors Fox, Michael; Schulitz, Marc; Gershfeld, Mikhail; Cohen, Marc
year 2018
title Full Integration: Closing the Gap on Technology Readiness
doi https://doi.org/10.52842/conf.acadia.2018.098
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 98-107
summary This paper discusses the authors’ experiences and lessons learned through designing and constructing small- and large-scale robotic prototypes and the fully integrated use of VR and AR for design. Also of focus here are the methodological tools utilized to implement this student-led research in an interdisciplinary educational environment, as well as the design explorations of Mars habitation systems. Through the systems engineering approach, students will generate ideas that may or may not make it to the final design development stage, but may potentially be valuable to future real exploration habitats and mission architectures. The final prototype allows an assessment of the focus parameters, which are the vessels’ transformation capacities and layout adaption. The design objective of this project is to examine strategies for commonality between an interplanetary vehicle (IPV) and a Mars surface habitat. The presented design proposals address this challenge to create a common habitation system in both habitats so that crew members will be familiar with the layout, function, and location throughout the expedition. The design tools operate at the intersection of architectural layout design, mechanics, and structural design, and use origami folding techniques and structural form-finding concepts to generate shell action rigidity. In addition, the project develops a strategy for mobility and transformation of the surface habitat prior to its transformed configuration. The value here lies in understanding lessons from this strategy for both the design process as well as efficiency and optimization in design as a model for terrestrial design.
keywords full paper, bim, flexible structures, performance + simulation, representation + perception, building technologies, vr/ar/mr
series ACADIA
type paper
email
last changed 2022/06/07 07:50

_id ecaade2018_104
id ecaade2018_104
authors Gürsoy, Benay
year 2018
title From Control to Uncertainty in 3D Printing with Clay
doi https://doi.org/10.52842/conf.ecaade.2018.2.021
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 21-30
summary The use of digital fabrication tools can extend beyond the seamless materialization of the digital model and can continuously inform design ideation through emerging material qualities. Exploring the implications of an approach to digital fabrication that is not based on imposed and rigorous formalisms but on unique and contextual ones constitutes the research agenda. Within this framework, the focus of this paper is on 3D printing with clay. Considering matter not as the static and passive outcome of digitally predetermined form, but as a design generator, a case study on both the materials and tools employed in 3D printing with clay is presented.
keywords Digital fabrication; additive manufacturing; 3D printing with clay; material computing; uncertainty
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2019_665
id caadria2019_665
authors Jin, Jinxi, Han, Li, Chai, Hua, Zhang, Xiao and Yuan, Philip F.
year 2019
title Digital Design and Construction of Lightweight Steel-Timber Composite Gridshell for Large-Span Roof - A Practice of Steel-timber Composite Gridshell in Venue B for 2018 West Bund World AI Conference
doi https://doi.org/10.52842/conf.caadria.2019.1.183
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 183-192
summary Timber gridshell is an efficient structural system. However, the feature of double curved surface result in limitation of practical application of timber gridshell. Digital technology provides an opportunity to break this limitation and achieve a lightweight free-form gridshell. In the practice of Venue B for 2018 West Bund World AI Conference, architects and structural engineers cooperated to explore innovative design of lightweight steel-timber composite gridshell with the help of digital tools. Setting digital technology as support and restrains of the project as motivation, the design tried to achieve the realization of material, structure, construction and spatial expression. The digital design and construction process will be discussed from four aspects, including form-finding of gridshell surface, steel-timber composite design, digital detailed design and model-based fabrication and construction. We focuses on the use of digital tools in this process, as well as the role of the design subject.
keywords Timber Gridshell; Steel-timber Composite; Digital Design and Construction; Lightweight Structure; Large-span Roof
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_306
id caadria2018_306
authors Liu, Jie, Ma, Hongtao, Tang, Ning, Xu, Weiguo and Luo, Dan
year 2018
title Kinetair: Interactive Stairs with Multiple Functions
doi https://doi.org/10.52842/conf.caadria.2018.2.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-378
summary Kinetair is an interactive stairs prototype which could change its appearance according to the surrounding conditions, providing a diversity of functions, such as stairs, exhibition walls, furniture and so on. This research is based on the Interactive Architecture theory, integrating with digital fabrication technology. This paper will illustrate the origin of the concept, the concept development process, the fabrication process and the various possible application of Kinetair. This experiment evokes us to rethink the fundamental meanings of the architecture components in a brand new perspective, and stimulates designers to explore the new features of conventional constructions with cutting-edge technologies.
keywords interactive stairs; stair design; kinetic structure; dynamic design; adaptive form
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_050
id caadria2018_050
authors Lo, Tian Tian and Schnabel, Marc Aurel
year 2018
title Virtual & Augmented Studio Environment (VASE) - Developing the Virtual Reality Eco-System for Design Studios
doi https://doi.org/10.52842/conf.caadria.2018.1.443
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 443-452
summary Virtual Reality (VR) is being revived in major disciplines, including architecture. VR is no longer only employed for basic operations, such as construction of 3D models, dynamic renderings, closed-loop interaction, inside-out perspective and enhance sensory feedback. This paper explains how over the past twenty years technologies and software have evolved that a new eco-system for design processes have risen. This paper discusses how students made full use of both software and equipment in the whole design process; from ideas exploration to site analysis to form generation to design realization. Students have been exposed to a whole range of digital software tools in the beginning. As most of them were already familiar with modelling software, they have in particular been introduced to animation software, game engines and even 3D documentation software such as photogrammetry. Most importantly, they were led to IVE. The paper points out the benefits of adopting such methodology and the difficulties faced by the students at the various stages of the design process.
keywords Design Studio; Virtual Reality; Software and Equipment; Design Exchange
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_228
id caadria2018_228
authors Newton, David
year 2018
title Accommodating Change and Open-Ended Search in Design Optimization
doi https://doi.org/10.52842/conf.caadria.2018.2.175
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 175-184
summary Many real-world architectural multi-objective problems (MOPs) are dynamic and may have objectives, decision variables, and constraints that change during the optimization process. These problems are known as dynamic MOPs (DMOPs). Dynamic multi-objective evolutionary algorithms (DMOEAs) have emerged in the fields of optimization, operations research, and computer science as one way to address the challenges posed by DMOPs. DMOEAs offer new capacities for exploration and interaction with the designer, but they have not yet been studied in the field of architecture. This research addresses these issues through the development of a unique interactive DMOEA-based design tool for the conceptual design phase. We propose a new modification to the popular nondominated sorting genetic algorithm II (NSGA-II), that we call the dynamic progressive for architecture NSGA-II (DPA-NSGA-II). We show that DPA-NSGA-II outperforms NSGA-II in finding novel solutions.
keywords algorithmic design; multi-objective optimization; evolutionary computation; parametric design; generative design
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
doi https://doi.org/10.52842/conf.acadia.2018.444
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2018_132
id caadria2018_132
authors Yan, Chao
year 2018
title "Real Virtuality" in the Process of Digitally Embedded Perception
doi https://doi.org/10.52842/conf.caadria.2018.1.091
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 91-100
summary The "digital turn" in architecture is ontologically drawn from Deleuzian philosophy, particularly the thinking defined by Manuel Delanda as real virtuality. This philosophical thinking reflects the essential paradigm of digital design-a generative process driven by intensive difference to approach the singularity of form in a space of possibilities. However, no matter how dynamic the design process is in digital software, the construction result of a building is unavoidably static and permanent. Thus, the essence of digital design will always be misaligned with the material reality of its production. Addressing on this confliction, the research is trying to rethink the philosophical term "real virtuality" in the process of human perception. By examining different theories about the anti-static condition of perception, it forms a novel perspective to address the dynamic relationship between building form, virtual "information" and human perception, and extends the productivity of "becoming" from digital design process to the process of building colonization.
keywords Digital Design Theory; Real Virtuality; New Materialism; Perception; Visual Uncertainty
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_257
id caadria2018_257
authors Yousif, Shermeen and Yan, Wei
year 2018
title Clustering Forms for Enhancing Architectural Design Optimization
doi https://doi.org/10.52842/conf.caadria.2018.2.431
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 431-440
summary This work introduces a new system in architectural design optimization that integrates form diversity and clustering methods into the process. The first method we propose is an algorithm for rating design solutions according to their geometric correspondences, maximizing differences and enforcing diversity. In addition, we implement the K-means algorithm to cluster the resulting design forms into groups of similar forms, to substitute each group with one representative solution. The work aims to facilitate decision making and form evaluation for designers, leading to an interactive optimization process, and contributing to improving existing optimization models in architectural design research and practice. We modeled a dynamic system through prototyping, experimenting and test-case application. As a prototype development, the protocol was done through phases of: (1) parametric modeling, (2) conducting energy simulation and daylight analysis and running a generative system, and (3) developing an algorithm for form diversity and another for implementing K-means clustering. The results are illustrated and discussed in detail in the paper.
keywords Architectural Design Optimization; Form Diversity; K-Means Clustering
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_165
id caadria2018_165
authors Yuan, Philip F., Chai, Hua and Jin, Jinxi
year 2018
title Digital Form-Finding and Fabrication of Strained Gridshells with Complex Geometries
doi https://doi.org/10.52842/conf.caadria.2018.1.267
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 267-276
summary Strained gridshells has been one of the most efficient structure system to cover large spans by lightweight construction. Nevertheless, gridshells structure has been seldom used due to the difficulties in gridshells form-finding and erection, as well as its limitation of morphological possibilities. In this regard, this paper aims to provide an integrated design and fabrication approach for extending the application of strained gridshells into the field of complex geometries. First, a form-finding method for complex gridshells design was put forward and tested taking Enneper surface as examples; secondly, the form-finding result was further developed into a gridshells system consisting of continuous laths, rotatable joints and rigid edge beams, which were optimized afterwards based on the structural simulation result with Finite Element Analysis. Third, the construction difficulties of this system were fully addressed in the robotic fabrication and erection process of a full scale prototype. This research tries to fully combine the structural characteristics of the strained gridshell with digital fabrication technologies to extend the application of strained gridshells into structures with more complex geometries.
keywords Strained Gridshell; Computational Form-finding; Structural Optimization; Robotic Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2018_1508
id sigradi2018_1508
authors Akta?, Begüm; Birgül Çolako?lu, M.
year 2018
title Systematic approach to design builds for freeform façade: AFA Cultural Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 176-182
summary The design and construction of the complex, irregularly shaped, and curvilinear building forms are also known as freeform architecture, have gained an interest form architects and engineers. This paper presents how freeform façade designs are defined with its curvilinear geometric characteristics and the systematic approach that is used to design and implement them. The proposed method incorporates product design and integral façade construction approach at AFA Cultural Center freeform façade implementation. Therefore, the paper aims to improve the viability of the proposed method and decreasing the gap between the other disciplines and architects in a systematic way without losing the creativity of the architects.
keywords  Parametric modeling; Systematic approach; Design thinking; System thinking; Freeform façade design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_309
id ecaade2018_309
authors Aºut, Serdar, Eigenraam, Peter and Christidi, Nikoletta
year 2018
title Re-flex: Responsive Flexible Mold for Computer Aided Intuitive Design and Materialization
doi https://doi.org/10.52842/conf.ecaade.2018.1.717
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 717-726
summary The paper presents an ongoing research about the design and a possible use of a responsive flexible mold. The mold is developed by integrating its precedents with automation and Human-Computer Interaction (HCI). The objective of the design is to provide an immersive design tool which has direct link to fabrication. It allows intuitive interaction to its user in order to help with the design and production of complex forms by supporting the designer's implicit skills with computer. The paper presents the design by illustrating the use of the hardware such as the actuators, the sensor and the projector; and by defining the workflow within the software. The paper concludes with the description of a possible use case in which the system is used to design and materialize an object in different scales.
keywords Design tools development; Digital fabrication and robotics; Human-computer interaction in design; Shape, form and geometry; Inventive Making
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_227345 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002