CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
doi https://doi.org/10.52842/conf.caadria.2018.2.185
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2018_262
id ecaade2018_262
authors Zarzycki, Andrzej
year 2018
title Strategies for the Integration of Smart Technologies into Buildings and Construction Assemblies
doi https://doi.org/10.52842/conf.ecaade.2018.1.631
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 631-640
summary This paper reviews current Internet of Things frameworks integrating embedded and distributed sensing and actuation in the context of research prototyping and the do-it-yourself movement. It focuses on the open-source and open-access technologies that can be applied into wiring smart cities, smart buildings, and smart building components. The paper contextualizes this discussion through the examples of the ESP8266 microcontroller (also known as NodeMCU) and Raspberry Pi single-board computer as well as web services such as Node-RED and If This Then That (IFTTT). The value of these platforms lies in the quasi-compatibility with other systems, scalability, and direct applicability to building technology prototyping. As such, they provide a natural and effective development path for a prototype to a full integration implementation.
keywords Smart Assemblies; Smart Buildings; Internet of Things; Raspberry Pi; Node-RED; MQTT
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_296
id ecaade2018_296
authors Czyñska, Klara
year 2018
title High Precision Visibility and Dominance Analysis of Tall Building in Cityscape - On a basis of Digital Surface Model
doi https://doi.org/10.52842/conf.ecaade.2018.1.481
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 481-488
summary The article presents a methodology applied for the assessment of the tall building visual impact on the city scape, using digital tools. The method has been used by the author in the planning practice in several cities in Poland. It enables to determine not only the visibility range of a planned tall building in the city spaces, but also the extent to which it dominates. Findings are presented in a map which reflects both parameters applicable to a given facility. Computation of findings is based on the model of a city consisting of a regular cloud of points (Digital Surface Model) of high quality and dedicated C++ software (developed in cooperation with author). The Visual Impact Size (VIS) method supports the process of conservation and landscaping, in particular in historical cities. It helps predicting spatial implications tall buildings may have. It may also be used for comprehensive development of a modern skyline with tall buildings as a harmonious component of the cityscape. The method is presented using the case study of the Hanza Tower building in Szczecin (Poland).
keywords digital cityscape analysis; tall buildings; visual impact; Visual Impact Size method; viewshed; Hanza Tower in Szczecin
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_329
id ecaade2018_329
authors De Luca, Francesco, Nejur, Andrei and Dogan, Timur
year 2018
title Facade-Floor-Cluster - Methodology for Determining Optimal Building Clusters for Solar Access and Floor Plan Layout in Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2018.2.585
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 585-594
summary Daylight standards are one of the main factors for the shape and image of cities. With urbanization and ongoing densification of cities, new planning regulations are emerging in order to manage access to sun light. In Estonia a daylight standard defines the rights of light for existing buildings and the direct solar access requirement for new premises. The solar envelope method and environmental simulations to compute direct sun light hours on building façades can be used to design buildings that respect both daylight requirements. However, no existing tool integrates both methods in an easy to use manner. Further, the assessment of façade performance needs to be related to the design of interior layouts and of building clusters to be meaningful to architects. Hence, the present work presents a computational design workflow for the evaluation and optimisation of high density building clusters in urban environments in relation to direct solar access requirements and selected types of floor plans.
keywords Performance-driven Design; Urban Design; Direct Solar Access; Environmental Simulations and Evaluations; Parametric Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2018_145
id ecaade2018_145
authors Fukuda, Tomohiro, Zhu, Yuehan and Yabuki, Nobuyoshi
year 2018
title Point Cloud Stream on Spatial Mixed Reality - Toward Telepresence in Architectural Field
doi https://doi.org/10.52842/conf.ecaade.2018.2.727
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 727-734
summary In remote meetings that involve the study of buildings and cities, sharing three-dimensional (3D) virtual spatial of buildings and cities is just as necessary as sharing the appearances and voices of meeting participants. Because of this, system development and pilot projects have attempted to share 3D virtual models via the internet in real-time but is still insufficient compared with face-to-face meeting. Therefore, this research explores the applicability of a spatial mixed reality (MR) system that displays point cloud streams to realize 3D remote meeting in architecture and urban fields. MR is a new technology that enables 3D presentations of various information, combining the physical and virtual worlds. One MR method is telepresence, which is expected to give people a way to communicate remotely as if face to face in a realistic way. We first developed a MR system named PcsMR (Point cloud stream on mixed reality) to display point cloud streams. The PcsMR system's operation consists of generating and transferring a point cloud stream and then rendering a point cloud stream using MR. The PcsMR acquired the point cloud stream in real-time using Kinect for Windows v2 and transferred it to Microsoft HoloLens, which uses optical see-through MR. Then we constructed two prototypes based on PcsMR and carried out pilot projects. Through observing the experiments, application possibilities for architecture and urban fields are found in meetings and communications that share real-time 3D objects and include the movement of remote participants and objects. The proposed method was evaluated feasible and effective.
keywords Telepresence; Mixed reality; Point cloud stream; Remote meeting; Real time
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_392
id ecaade2018_392
authors Gargaro, Silvia, Cigola, Michela, Gallozzi, Arturo and Fioravanti, Antonio
year 2018
title Cultural Heritage Knowledge Context - A model based on Collaborative Cultural approach
doi https://doi.org/10.52842/conf.ecaade.2018.2.205
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 205-214
summary Cultural Heritage is a wide concept. It's what remains of the past generations Cultural Heritage includes tangible culture (such as buildings, monuments, landscapes, books, works of art and artifacts), intangible culture (such as folklore, music, traditions, language and knowledge) and natural heritage (including culturally significant landscapes, and biodiversity). A good preservation, restauration and valorization of Cultural Heritage embraces tangible and intangible culture, actually not evaluated in an holistic way.Cultural Heritage is not only an historical memory of the past, but the mirror of an anthropological reality that characterizes our personal and collective identity within a cultural context. The question is: How can we take into account these thought categories? The model proposed would be an used methodology to analyze the model for data acquisition, processing, modeling and implementation of knowledge on culture and social context through ontologies. The purpose of the research is to analyze the relationship between Cultural Context and Cultural Heritage.The contribution proposes an original approach to Cultural Heritage based on a social and cultural approach, transforming the user as an actor for the acquisition of raw data and cultural knowledge, applying the model to the Archaeological Complex of Casinum, in South Latium.
keywords Cultural Heritage; Context Knowledge; Intangible Knowledge; Ontologies; Human Behavior Constraints
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_k02
id ecaade2018_k02
authors Ingarden, Krzysztof
year 2018
title Between Critical Regionalism, Neo-vernacularism and Localised Modernism - Three projects of Ingarden & Ewy.
doi https://doi.org/10.52842/conf.ecaade.2018.1.017
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 17-24
summary In the 70s-80s Kenneth Frampton, defined the phenomenon of "critical regionalism" in contemporary architecture. He pointed out that the most interesting objects arise at the threshold between local and global architecture. These are objects that are open to modern technology in various fields of science, and at the same time remain rooted in the local tradition of building , thus to create a space that is approved and understood locally. The article presents two examples of buildings (the Ma³opolska Garden of Arts in Krakow and the Polish Pavilion EXPO 2005 Aichi in Japan, Europe - Far East Gallery in Krakow) that look for their individual contextual sources, turn to experiments with traditional materials, try to find lost threads of handicraft tradition, and at the same time reach for modern technologies with respect for the natural and cultural environment.
keywords wicker facade; building material experiments; experimental architecture; Polish architecture
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2018_281
id caadria2018_281
authors Lee, Jisun and Lee, Hyunsoo
year 2018
title Pneumatic Skin with Adaptive Openings - Adaptive Façade with Opening Control Integrated with CFD for Natural Ventilation
doi https://doi.org/10.52842/conf.caadria.2018.2.143
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 143-151
summary The unique integration of geometries and techniques allows the natural organisms to adapt to different environments in creative ways. In this study, a bio-inspired pneumatic facade is presented as a strategy to improve the efficiency of natural ventilation performance by controlling the adaptive openings. The Computational Fluid Dynamics simulation has been conducted to visualize airflows in order to explore how the changing configurations of openings enhance natural ventilation efficiency. The airflows are investigated with changes in wind speed and direction to find out the opening configurations which provide indoor airflows at the comfort level of velocities. As results, it was shown that indoor air velocities were modulated by controlling opening sizes, geometries and positions of the openings, and it was a beneficial strategy to apply the optimized opening configurations implementing automatic control. Also, the air distribution can be enhanced by changing opening configurations in changing conditions of wind speed and direction. An effective methodology for an intelligent façade opening control to encourage natural ventilation is presented in this study to deliver users comfort and efficiency.
keywords Natural ventilation; airflow simulation; pneumatic facade; Computational Fluid Dynamics
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2018_1333
id sigradi2018_1333
authors Lica Chokyu, Margaret
year 2018
title Shape Grammar and Social Housing: recognizing patterns in favelas’ buildings
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 170-175
summary Social Housing is worldwide problem, especially in underdeveloped countries. In Brazil, people do solve this issue with self-made houses, in irregular land occupations. As a result, those informal settlements, also known as favelas, proliferate in medium and big cities all over the country, in very poor infrastructure. On the other hand, governmental policies for social housing development are often criticized, because of several reasons, including architectural design, frequently unfit for the families assisted. The present work observes the architecture developed in self-made houses at Favela da Rocinha and presents Shape Grammar as an instrument for analysis of frequent solutions, in order to provide data for adequate architectural design.
keywords Shape grammar; Favelas; Informal architecture, Teaching observation
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_210
id caadria2018_210
authors Lin, Yuqiong, Zheng, Jingyun, Yao, Jiawei and Yuan, Philip F.
year 2018
title Research on Physical Wind Tunnel and Dynamic Model Based Building Morphology Generation Method
doi https://doi.org/10.52842/conf.caadria.2018.2.165
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 165-174
summary The change of the building morphology directly affects the surrounding environment, while the evaluation of these environment data becomes the main basis for the genetic iterations of the building morphology. Indeed, due to the complexity of the outdoor natural ventilation, multiple factors in the site could be the main reasons for the change of air flow. Thus, the architect is suggested to take the wind environment as the main morphology generation factor in the early stage of the building design. Based on the research results of 2017 DigitalFUTURE Wind Tunnel Visualization Workshop, a novel self-form-finding method in design infancy has been proposed. This method uses Arduino to carry out the dynamic design of the building model, which can not only connect the sensor to monitor the wind environment data, but also contribute the building model to correlate with the wind environment data in real time. The integration of the Arduino platform and the physical wind tunnel can create the possibility of continuous and real-time physical changes, data collection and wind environment simulation, using quantitative environmental factors to control building morphology, and finally achieve the harmony among the building, environment and human.
keywords Physical wind tunnel; dynamic model; building morphology generation; environmental performance design; wind environment visualization
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2018_067
id caadria2018_067
authors Lu, Shuai and Guo, Cong
year 2018
title Investigation on the Potential of Improving Daylight Efficiency of Office Buildings by Optimized Curved Facades
doi https://doi.org/10.52842/conf.caadria.2018.2.113
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 113-121
summary With the rapid development of digital design methods, irregular curved shapes have been more and more widely used in buildings, which not only enriches the appearances of buildings, but also provide new possibilities of improving building performance by shape designs. However, existing researches regarding building performance and shapes mostly focus on regular shapes, while curved shapes are rarely explored. This paper aims to employ design optimization method to explore the improvement of building performance that curved shapes could contribute. Specifically, office buildings are chosen as an example and the potential of improving the daylight efficiency of them by optimized curved facades are investigated. Three major cities and two orientations are involved in the investigation. The results prove that curved facades do have significant potential to improve the daylight efficiency of office buildings, and an average improvement of 0.2032 is achieved by the optimized curved facades in the 6 cases conducted in this research in terms of the area-weighted average UDI (useful daylight illuminance) compared with the same building with plane facade.
keywords Curved Facade; Daylight; Building Performance; Design Optimization; Office Building
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2018_1677
id sigradi2018_1677
authors Machado Fagundes, Cristian Vinicius; Duarte Costa, Cauê; Pinto da Silva, Fábio; Miotto Bruscato, Underléa
year 2018
title Facade hollow brick (cobogó) 3D scanning: natural light admission analysis and comparison with original digital 3D model.
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 596-601
summary The cobogó is a hollow brick used for light and ventilation control, besides having an important aesthetic function. With computer graphics, 3d digital models can be used during the design process to verify these functions. Thus, the goal of this paper is to compare and analyze the different digital 3D models obtained (built virtually or through 3D scanning) of a cobogó existing in the Brazilian market, so that visual and lighting differences can be observed, and how these differences can impact the design process.
keywords 3D Scanning; Parametric Design; Climatic Analysis; 3D model
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2018_394
id ecaade2018_394
authors Rubinowicz, Pawe³
year 2018
title Application of Available Digital Resources for City Visualisation and Urban Analysis
doi https://doi.org/10.52842/conf.ecaade.2018.2.595
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 595-602
summary The article presents two methods for generating 3D city models. The methods are based on LiDAR and GIS-2D data. The first one enables to create automatically simplified city models that include buildings in the LoD1 standard (excluding roof geometry). The second one provides for generating precise 3D city models including all components of the city space, such as buildings, tall green, city infrastructure. This involves direct transformation of DSM (Digital Surface Model) data as mesh-3D. The analyses presented are based on data available in Poland (in particular GIS). The results of the study can be easily applied for analysing other cities in Europe and elsewhere in the world. The article presents possibilities of using such models to urban analyses. The methods and figures included in the article have been developed using C++ software developed by the author.
keywords airborne LiDAR scanning; Digital Surface Model; BDOT 10k; city visualization; digital urban analysis; urban design
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_303
id caadria2018_303
authors Song, Jae Yeol, Kim, Jin Sung, Kim, Hayan, Choi, Jungsik and Lee, Jin Kook
year 2018
title Approach to Capturing Design Requirements from the Existing Architectural Documents Using Natural Language Processing Technique
doi https://doi.org/10.52842/conf.caadria.2018.2.247
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 247-254
summary This paper describes an approach to utilizing natural language processing (NLP) to capture design requirements from the natural language-based architectural documents. In various design stage of the architectural process, there are several different kinds of documents describing requirements for buildings. Capturing the design requirements from those documents is based on extracting information of objects, their properties, and relations. Until recently, interpreting and extracting that information from documents are almost done by a manual process. To intelligently automate the conventional process, the computer has to understand the semantics of natural languages. In this regards, this paper suggests an approach to utilizing NLP for semantic analysis which enables the computer to understand the semantics of the given text data. The proposed approach has following steps: 1) extract noun words which mostly represent objects and property data in Korean Building Act; 2) analyze the semantic relations between words, using NLP and deep learning; 3) Based on domain database, translate the noun words in objects and properties data and find out their relations.
keywords NLP (Natural Language Processing); Deep learning; Design requirements; Korean Building Act; Semantic analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_274
id ecaade2018_274
authors Stojanovski, Todor
year 2018
title City Information Modelling (CIM) and Urban Design - Morphological Structure, Design Elements and Programming Classes in CIM
doi https://doi.org/10.52842/conf.ecaade.2018.1.507
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 507-516
summary In architecture, there was an evolution from Computer-Aided Design (CAD) to Building Information Modelling (BIM), but in urban planning and design, where the Geographic Information Systems (GIS) are often used, there is no such analogy. This paper reviews research in typo-morphology, a branch of urban morphology, procedural modelling of buildings and cities and 3D city modelling and visualizations. It present a generic morphological structure of urban elements and discusses them as programming classes in City Information Modelling (CIM) and the application of CIM in urban design practice. Urban design can be understood as art of juxtaposing and arranging urban design elements such as streets, sidewalks, buildings, building façades, landscaping, etc. Designing implies experimentation and play for design elements within design worlds. CIM should integrate procedural modelling, urban morphological research with toolboxes of design elements and rules of combinations. CIM should serve as digital design worlds where urban designers can play with design elements, model and analyse urban scenarios with generative procedures, rules and typological processes.
keywords City Information Modelling (CIM); urban morphology; morphological structure; urban design; design element; programming classes
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_209
id caadria2018_209
authors Yao, Jiawei, Lin, Yuqiong, Zhao, Yao, Yan, Chao, Li, Changlin and Yuan, Philip F.
year 2018
title Augmented Reality Technology based Wind Environment Visualization
doi https://doi.org/10.52842/conf.caadria.2018.1.369
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 369-377
summary Considering the outdoor environment at the initial stage of design process plays a significant role on future building performance. Augmented Reality (AR) technology applied in this research can integrate real world building morphology information and virtual world ventilation information seamlessly that rapidly and directly provides designers information for observation and evaluation. During the case study of "2017 Shanghai DigitalFUTURE" summer workshop, a research on augmented reality technology based wind environment visualization was carried on. The achievement with an application software not only showed the geometric information of the real world objects (such as buildings), but also the virtual wind environment has displayed. Thus, these two kinds of information can complement and superimpose each other. This AR technology based software brings multiple synthetic together, which can (1) visualize the air flow around buildings that provides designers rapid and direct information for evaluation; (2) deal with wind-environment-related data quantitatively and present in an intuitive, easy-to-interpret graphical way; and (3) be further developed as a visualization system based on built-in environments in the future, which contributes to rapid evaluation of a series of programs at the beginning of the building design.
keywords Environment visualization; Augmented reality technology; Fast response; Outdoor ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2018_107
id caadria2018_107
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2018
title SLAM-Based MR with Animated CFD for Building Design Simulation
doi https://doi.org/10.52842/conf.caadria.2018.1.391
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 391-400
summary In advanced society, the existing building stock has huge social, economic, and environmental impact. There is a high demand for stock renovation, which gives existing buildings new lives, rather than building new ones. During the renovation process, it is necessary to simultaneously achieve architectural, facilities, structural, and environmental design in order to accomplish a healthy, comfortable, and energy-saving indoor environment, prevent delays in problem solving, and achieve a timely feedback process. This study tackled the development of an integrated system for stock renovation by considering computational fluid dynamics (CFD) and Mixed Reality (MR) in order to allow the simultaneous design of a building plan and thermal environment. The CFD analysis enables the simulation of the indoor thermal environment, including the effects of daylight and ventilation. The MR system visualizes the simulation results intuitively and makes renovation projects perform in a very efficient manner with regard to various stakeholders. In addition, a new CFD animation generation method is proposed in MR system, in order for users to consider the entirety of changes in the thermal environment.
keywords thermal environment; computational fluid dynamics (CFD); mixed reality (MR); daylight; ventilation
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_447808 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002