CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ecaade2018_215
id ecaade2018_215
authors Mohite, Ashish, Kochneva, Mariia and Kotnik, Toni
year 2018
title Material Agency in CAM of Undesignable Textural Effects - The study of correlation between material properties and textural formation engendered by experimentation with G-code of 3D printer
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 293-300
doi https://doi.org/10.52842/conf.ecaade.2018.2.293
summary This paper presents intermediate results of an experimental research directed towards development of a method to use additive manufacturing technology as a generative agent in architectural design process. The primary technique is to variate speed of material deposition of a 3D printer in order to produce undetermined textural effects. These effects demonstrate local variation of material distribution, which is treated as a consequence of interaction between machining parameters and material properties. Current stage of inquiry is concerned with studying material agency by using two different materials as variables in the same experimental setup. The results suggest potential benefits for mass-customized fabrication and deeper understanding of how different materials can be employed in the same manufacturing system to achieve a range of effective behaviors.
keywords digital fabrication; digital craft
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia18_302
id acadia18_302
authors Zivkovic, Sasa; Battaglia, Christopher
year 2018
title Rough Pass Extrusion Tooling. CNC post-processing of 3D-printed sub-additive concrete lattice structures
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 302-311
doi https://doi.org/10.52842/conf.acadia.2018.302
summary Rough Pass Extrusion Tooling advances the manufacturing precision of full-scale Sub-Additive 3D printed concrete lattices in a three-step process that involves spatial 3D printing, high precision 3D scanning, and CNC post-processing. Utilizing robotics and computation, Sub-Additive Manufacturing (Battaglia et al. 2018) leverages digital workflows to produce structurally, materially, and spatially optimized lightweight concrete building components. Instead of further refining the 3D printing practice towards accuracy, and unlike other research projects that investigate 3D printing and subsequent post-processing, the method proposes to deliberately print a “rough pass”, accommodating any fabrication inaccuracy inevitably resulting from the concrete material and nozzle extrusion process. In a second step, supported by the advancement of 3D scanning, accuracy and geometric intricacy are achieved through locally post-processing components along edges, in pockets, on surfaces, and in areas of joinery. Rough Pass Extrusion Tooling enables the incorporation of higher fabrication tolerances as well as the integration of building systems, hardware, and complex connections. The method takes full advantage of the 3D printing process while introducing means to dramatically increase fabrication precision. Procedural infidelity – not aiming to solve accuracy through 3D printing alone – enables the development of a technically, methodologically, aesthetically, and performatively progressive multi-process fabrication method which opens a new realm for concrete printing accuracy. This paper closely examines CNC post-processing for Sub-Additive concrete print assemblies, addressing methodologies, opportunities, and shortcomings of such an approach.
keywords full paper, fabrication & robotics, materials/adaptive systems, digital craft, fabrication tolerances
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id acadia18_232
id acadia18_232
authors Kilian, Axel
year 2018
title The Flexing Room Architectural Robot. An Actuated Active-Bending Robotic Structure using Human Feedback
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 232-241
doi https://doi.org/10.52842/conf.acadia.2018.232
summary Advances in autonomous control of object-scale robots, both anthropomorphic and vehicular, are posing new human–machine interface challenges. In architecture, very few examples of autonomous inhabitable robotic architecture exist. A number of factors likely contribute to this condition, among them the scale and cost of architectural adaptive systems, but on a more fundamental conceptual level also the questions of how architectural robots would communicate with their human inhabitants. The Flexing Room installation is a room-sized actuated active-bending skeleton structure. It uses rudimentary social feedback by counting people to inform its behavior in the form of actuated poses of the room enclosure. An operational full-scale prototype was constructed and tested. To operate it no geometric-based simulation was used; the only communication between computer and structure was in sending values for the air pressure settings and in gathering sensor feedback. The structure’s physical state was resolved through the embodied computation of its interconnected parts, and the people-counting sensor feedback influences its next action. Future work will explore the development of learning processes to improve the human–machine coexistence in space.
keywords full paper, fabrication & robotics, non-production robotics, materials/adaptive systems, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_301
id ecaade2018_301
authors Cocho-Bermejo, Ana, Birgonul, Zeynep and Navarro-Mateu, Diego
year 2018
title Adaptive & Morphogenetic City Research Laboratory
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 659-668
doi https://doi.org/10.52842/conf.ecaade.2018.2.659
summary "Smart City" business model is guiding the development of future metropolises. Software industry sales to town halls for city management services efficiency improvement are, these days, a very pro?table business. Being the model decided by the industry, it can develop into a dangerous situation in which the basis of the new city design methodologies is decided by agents outside academia expertise. Drawing on complex science, social physics, urban economics, transportation theory, regional science and urban geography, the Lab is dedicated to the systematic analysis of, and theoretical speculation on, the recently coined "Science of Cities" discipline. On the research agenda there are questions arising from the synthesis of architecture, urban design, computer science and sociology. Collaboration with citizens through inclusion and empowerment, and, relationships "City-Data-Planner-Citizen" and "Citizen-Design-Science", configure Lab's methodology provoking a dynamic responsive process of design that is yet missing on the path towards the real responsive city.
keywords Smart City; Morphogenetic Urban Design; Internet of Things; Building Information Modelling; Evolutionary Algorithms; Machine Learning & Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_399
id ecaade2018_399
authors Cutellic, Pierre
year 2018
title UCHRON - An Event-Based Generative Design Software Implementing Fast Discriminative Cognitive Responses from Visual ERP BCI
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 131-138
doi https://doi.org/10.52842/conf.ecaade.2018.2.131
summary This research aims at investigating BCI technologies in the broad scope of CAAD applications exploiting early visual cognition in computational design. More precisely, this paper will describe the investigation of key BCI and ML components for the implementation and development of a software supporting this research : Uchron. It will be organised as follows. Firstly, it will introduce the pursued interest and contribution that visual-ERP EEG based BCI application for Generative Design may provide through a synthetic review of precedents and BCI technology. Secondly, selected BCI components will be described and a methodology will be presented to provide an appropriate framework for a CAAD software approach. This section main focus is on the processing component of the BCI. It distinguishes two key aspects of discrimination and generation in its design and proposes a new model based on GAN for modulated adversarial design. Emphasis will be made on the explicit use of inference loops integrating fast human cognitive responses and its individual capitalisation through time in order to reflect towards the generation of design and architectural features.
keywords Human Computer Interaction; Neurodesign; Generative Design; Design Computing and Cognition; Machine Learning
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_111
id ecaade2018_111
authors Khean, Nariddh, Fabbri, Alessandra and Haeusler, M. Hank
year 2018
title Learning Machine Learning as an Architect, How to? - Presenting and evaluating a Grasshopper based platform to teach architecture students machine learning
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 95-102
doi https://doi.org/10.52842/conf.ecaade.2018.1.095
summary Machine learning algorithms have become widely embedded in many aspects of modern society. They have come to enhance systems, such as individualised marketing, social media services, and search engines. However, contrasting its growing ubiquity, the architectural industry has been comparatively resistant in its adoption; objectively one of the slowest industries to integrate with machine learning. Machine learning expertise can be separate from professionals in other fields; however, this separation can be a major hinderance in architecture, where interaction between the designer and the design facilitates the production of favourable outcomes. To bridge this knowledge gap, this research suggests that the solution lies with architectural education. Through the development of a novel educative framework, the research aims to teach architecture students how to implement machine learning. Exploration of student-centred pedagogical strategies was used to inform the conceptualisation of the educative module, which was subsequently implemented into an undergraduate computational design studio, and finally evaluated on its ability to effectively teach designers machine learning. The developed educative module represents a step towards greater technological adoption in the architecture industry.
keywords Artificial Intelligence; Machine Learning; Neural Networks; Student-Centred Learning; Educative Framework
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2018_126
id caadria2018_126
authors Khean, Nariddh, Kim, Lucas, Martinez, Jorge, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title The Introspection of Deep Neural Networks - Towards Illuminating the Black Box - Training Architects Machine Learning via Grasshopper Definitions
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 237-246
doi https://doi.org/10.52842/conf.caadria.2018.2.237
summary Machine learning is yet to make a significant impact in the field of architecture and design. However, with the combination of artificial neural networks, a biologically inspired machine learning paradigm, and deep learning, a hierarchical subsystem of machine learning, the predictive capabilities of machine learning processes could prove a valuable tool for designers. Yet, the inherent knowledge gap between the fields of architecture and computer science has meant the complexity of machine learning, and thus its potential value and applications in the design of the built environment remain little understood. To bridge this knowledge gap, this paper describes the development of a learning tool directed at architects and designers to better understand the inner workings of machine learning. Within the parametric modelling environment of Grasshopper, this research develops a framework to express the mathematic and programmatic operations of neural networks in a visual scripting language. This offers a way to segment and parametrise each neural network operation into a basic expression. Unpacking the complexities of machine learning in an intermediary software environment such as Grasshopper intends to foster the broader adoption of artificial intelligence in architecture.
keywords machine learning; neural network; action research; supervised learning; education
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaaderis2018_111
id ecaaderis2018_111
authors Kontovourkis, Odysseas and Tryfonos, George
year 2018
title An integrated robotically-driven workflow for the development of elastic tensile structures in various scales
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 111-120
keywords This paper presents an ongoing work towards the development of an integrated robotically-driven workflow that can be used for the design, development and subsequent fabrication of small-to large-scale elastic tensile mesh structures. This approach involves digital form-finding and optimization, driven by robotic manufacturing principles and it aims to overcome the limitations of currently available tools, to work either in the design or the fabrication phase of the process. At the same time, it involves the fabrication of systems in several scales followed by respective analyses of results according to the specific type and diameter of the material used. Specifically, form-finding and optimization are responsible for controlling the pretension of the elastic threads, aiming to determine the final tensile mesh and to generate the additive robotic tool-path. In parallel, the type and diameter of the material involved, define the necessary changes of the end-effector tool, which is responsible to implement the process. Despite that design results can be in any scale, for study purposes an experimentation into a small-scale is conducted, to evaluate the suggested automated construction process in general and the end-effector mechanism in particular.
series eCAADe
email
last changed 2018/05/29 14:33

_id caadria2018_282
id caadria2018_282
authors Nelson, Jonathan and Knapp, Chris
year 2018
title GLUEHOUSE - Towards an Open, Integrated Design-To-Fabrication Workflow for Realizing Variable-Geometry Stress-Skin Plywood Cassette Panels
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 277-286
doi https://doi.org/10.52842/conf.caadria.2018.1.277
summary This paper documents the development and application of an open, flexible, and highly integrated design to fabrication workflow capable of resolving complex geometries into a stress-skin panel system ready for direct construction. The system was developed in late 2016 and has been tested at full scale by being utilized to build a complete 225 m2 single-family dwelling.
keywords Digital Fabrication; FIle-to-Factory; Automated Construction
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2018_198
id caadria2018_198
authors Reinhardt, Dagmar, Candido, Christhina, Cabrera, Densil, Wozniak-O'Connor, Dylan, Watt, Rodney, Bickerton, Chris, Titchkosky, Ninotschka and Houda, Maryam
year 2018
title Onsite Robotic Fabrication for Flexible Workspaces - Towards Design and Robotic Fabrication of an Integrated Responsive Ceiling System for A Workspace Environment
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 59-68
doi https://doi.org/10.52842/conf.caadria.2018.1.059
summary Open, flexible workspaces were introduced decades ago, but architectural design approaches to ceiling systems have not changed substantially. This paper discusses the development of strategies and prototypes for a lightweight, integrated ceiling structure that is robotically woven. Through geometrically complex, fibre-reinforced building elements that are produced onsite, a new distribution system for data and light can be provided and support individual and multi-group collaborations in an contemporary open-plan office for maximum flexibility. The paper introduces applied design research with case studies that test robotic weaving on an architectural ceiling. The second part contextualises the presented work by linking it to workspace scenarios and an on-site robotic process with a resulting data distribution that is designed to produce degrees of freedom for high flexibility in use, allowing occupants to organise the workspace layout autonomously so that workflow constellations in different teams can be adequately expressed through space. The paper concludes with a discussion of a framework for robotic methods developed for the carbon-fibre overhead weaving processes, followed by conclusions and outlook towards future potentials.
keywords open collaborative workspace; robotic onsite weaving; carbon fiber; integrated ceiling systems
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia18_260
id acadia18_260
authors Tish, Daniel; Schork, Tim; McGee, Wes
year 2018
title Topologically Optimized and Functionally Graded Cable Nets. New approaches through robotic additive manufacturing
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 260-265
doi https://doi.org/10.52842/conf.acadia.2018.260
summary Recent advancements in the realm of additive manufacturing technologies have made it possible to directly manufacture the complex geometries that are resultant from topological optimization and functionally graded material processes. Topological optimization processes are well understood and widely used within the realm of structural engineering and have been increasingly adopted in architectural design and research. However, there has been little research devoted to the topological optimization of cable nets and their fabrication through robotic additive manufacturing. This paper presents a design framework for the optimization of additively manufactured tensile cable nets that attempts to bridge between these two domains by reframing the scale of topological optimization processes. Instead of focusing solely on the topology optimization at the macro-scale of cable nets, this research develops a method to optimize the meso-scale topology and defines metamaterial units with different properties to be aggregated into a complex whole. This reorientation from the formal towards the material domain signals an engagement with morphogenetic modes of design that find formal expression through bottom-up material processes. In order to further investigate the emerging potentials of this reorientation, the presented method is validated through physical deformation tests, as well as applied to the design of a furniture-scale case study project realized through the use of robotic additive manufacturing of elastomeric materials
keywords work in progress, materials & adaptive systems, robotic production, computation, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia18_424
id acadia18_424
authors Bucklin, Oliver; Drexler, Hans; Krieg, Oliver David; Menges, Achim
year 2018
title Integrated Solid Timber. A multi-requisite system for the computational design,fabrication, and construction of versatile building envelopes
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 424-433
doi https://doi.org/10.52842/conf.acadia.2018.424
summary The paper presents the development of a building system made from solid timber that fulfils the requirements of modern building skins while expanding the design possibilities through innovation in computational design and digital fabrication. Multiple strategies are employed to develop a versatile construction system that generates structure, enclosure and insulation while enabling a broad design space for contemporary architectural expression. The basic construction unit augments the comparatively high insulation values of solid timber by cutting longitudinal slits into beams, generating air chambers that further inhibit thermal conductivity. These units are further enhanced through a joinery system that uses advanced parametric modeling and computerized control to augment traditional joinery techniques. Prototypes of the system are tested at a building component level with digital models and physical laboratory tests. It is further evaluated in a demonstrator building to test development and further refine design, fabrication and assembly methods. Results are integrated into proposals for new methods of implementation. The results of the research thus far demonstrate the validity of the strategy, and continuing research will improve its viability as a building system.
keywords full paper, materials and adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1609
id sigradi2018_1609
authors Chia, Hsu Yi; Hsien, Hsu Pei
year 2018
title The fabrication and application of parametric inflatable structure
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 684-689
summary This study uses parametric design to optimize the process and application of the inflatable method. Inflatable design has advantages of light weight, integral forming, volume change, etc., but the manufacturing process often requires the development of molds, a large number of manual heat seals, etc. Inspired by the structure principle of amputated wing tube structure, coupled with the advantages of parameterization and digital tool heat sealing, The same material can be made at different tightness, because the tight design with different angles has more structural characteristics and bending properties, thereby generating more complex spatial structures. Different materials also have corresponding manufacturing methods, which also increase the opportunities for application in architectural design.
keywords Robotic arms fabrication; Inflatable Shape-change; pneumatic; bending mechanism; pavilion design;
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_332
id ecaade2018_332
authors de Azambuja Varela, Pedro and Sousa, José Pedro
year 2018
title Reinforced, Reusable, Reconfigurable Molds for Cast Voussoirs
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 771-780
doi https://doi.org/10.52842/conf.ecaade.2018.1.771
summary This paper describes the theory and practical experiments on the development of a system for the deployment of stereotomic voussoirs. The recent availability of digital design and fabrication tools has enabled architects to embrace stereotomic thinking, allowing for the efficient spanning of spaces with low tensile capable materials such as stone. The proposed fabrication system is an evolution of an on-going research which creates a direct link between the geometrical and material needs of a stereotomic structure with materialization tools that enable the swift creation of multiple customized blocks.
keywords stereotomy; voussoir; mould; robotic; mass customization; plaster
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia18_358
id acadia18_358
authors Lara Ditzel, Patricio; Balas, Leonard; Kalina, Olga; Vasey, Lauren; Bechert, Simon; Krieg ,Oliver David; Menges, Achim; Knippers, Jan
year 2018
title Integrative Fabrication of Sandwich Shells. An integrative approach to design of robotically fabricated wood- based sandwich segmented shells
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 358-365
doi https://doi.org/10.52842/conf.acadia.2018.358
summary This paper presents the development of an integrative and adaptive robotic fabrication process for the production of wooden-based segmented shells of variable thickness. A material and construction process is presented whereby an industrial robot with a two-degree of freedom end-effector acts as active form-work, positioning flexible strips of plywood so they can be assembled into a structurally performative configuration and then filled with a polyurethane expandable foam. The resulting material system is a structurally performative and doubly curved sandwich composite which performs well in bending. This paper discusses the construction process and the material system, methods for structural analysis, an adaptive robotic fabrication process, as well as a computational design tool which integrates material constraints, robotic constraints, and structural performance. The resulting construction system expands the design possibilities for robotic fabrication in wood, particularly as a viable material system for implementation directly in an on-site condition.
keywords work in progress, fabrication & robotics, materials & adaptive systems
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_108
id ecaade2018_108
authors Luo, Dan, Wang, Jingsong and Xu, Weiguo
year 2018
title Applied Automatic Machine Learning Process for Material Computation
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 109-118
doi https://doi.org/10.52842/conf.ecaade.2018.1.109
summary Machine learning enables computers to learn without being explicitly programmed. This paper outlines state-of-the-art implementations of machine learning approaches to the study of physical material properties based on Elastomer we developed, which combines with robotic automation and image recognition to generate a computable material model for non-uniform linear Elastomer material. The development of the neural network includes a few preliminary experiments to confirm the feasibility and the influential parameters used to define the final RNN neural network, the study of the inputs and the quality of the testing samples influencing the accuracy of the output model, and the evaluation of the generated material model as well as the method itself. To conclude, this paper expands such methods to the possible architectural implications on other non-uniform materials, such as the performance of wood sheets with different grains and tensile material made from composite materials.
keywords neural network; robotic; material computation; automation
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
doi https://doi.org/10.52842/conf.caadria.2023.2.231
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

_id acadia18_414
id acadia18_414
authors Marcus, Adam; Ikeda, Margaret; Jones, Evan; Metcalf, Taylor; Oliver, John; Hammerstrom, Kamille; Gossard, Daniel
year 2018
title Buoyant Ecologies Float Lab. Optimized upside-down benthos for sea level rise adaptation
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 414-423
doi https://doi.org/10.52842/conf.acadia.2018.414
summary This paper describes the Buoyant Ecologies project, an ongoing research collaboration between architects, marine ecologists, and manufacturers focused on developing integrated architectural, ecological, and material responses to climate change and sea level rise. The research employs techniques of design computation and robotic fabrication to develop an approach to coastal resilience that is rooted in material performance as it relates to marine habitats. The project explores the design and production of highly performative fiber-reinforced polymer substrates that interact productively with the underwater ecosystem to promote multi-scalar habitats for invertebrate animals, encouraging ecological diversity and serving as wave-attenuating structures that mitigate coastal erosion. In this regard, the research leverages computational workflows of modeling, simulation, and fabrication to interface between human and nonhuman species in a way that benefits the broader ecosystem. The paper discusses an iterative prototyping process that has led to the design and construction of the Float Lab, a larger-scale prototype of a floating breakwater.
keywords full paper, materials & adaptive systems, performance + simulation, digital fabrication, collaboration
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id acadia18_350
id acadia18_350
authors Seibold, Zach; Hinz, Kevin; García del Castillo y López, Jose Luis; Martínez Alonso, Nono; Mhatre, Saurabh; Bechthold, Martin
year 2018
title Ceramic Morphologies. Precision and control in paste-based additive manufacturing
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 350-357
doi https://doi.org/10.52842/conf.acadia.2018.350
summary Additive manufacturing techniques (AMT), commonly referred to as 3D printing, are emerging as a new area of study for the production of ceramic elements at the architectural scale. AMT may allow architectural designers to break from the established means of designing with ceramic elements – a process where designs are typically confined to a limited selection of building components produced by machine, die or fixture. In this paper, we report a method for the design and additive manufacture of customizable ceramic masonry elements via paste-based extrusion. A novel digital workflow allowed for precise control of part design, and generated manufacturing parameters such as toolpath geometry and machine code. 3D scans of a selection of elements provide an initial analysis of print fidelity. We discuss the current constraints of this process and identify several on-going research trajectories generated because of this research.
keywords work in progress, fabrication & robotics, materials/adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id sigradi2018_1761
id sigradi2018_1761
authors Silva Soares, Wemerson; Cavalcante Pessôa Quintella, Ivvy Pedrosa; Quintella Florêncio, Eduardo
year 2018
title Research pavilions: contributions to the advancement of digital technologies, tectonics and materials in architecture
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 708-713
summary This paper presents partial results of a research dedicated to the architectural typology of temporary pavilions, focused in research pavilions developed by academic research groups. The relevance of these pavilions is evidenced for the development of new paradigms of design, as well as of the constructive possibilities offered by advanced technologies of digital manufacturing, like robotic arms. These innovative processes have been transported from the academy to the professional branch, but still in a timely application. However, they have already had a profound impact on the academic research institutions, adding a significant theoretical/ practical contribution to the contemporary architectural field.
keywords Temporary pavilions; Digital manufacturing; Robotic fabrication; Construction materials; Biomimetic architecture
series SIGRADI
email
last changed 2021/03/28 19:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_749262 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002