CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 436

_id acadia18_156
id acadia18_156
authors Huang, Weixin; Zheng, Hao
year 2018
title Architectural Drawings Recognition and Generation through Machine Learning
doi https://doi.org/10.52842/conf.acadia.2018.156
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 156-165
summary With the development of information technology, the ideas of programming and mass calculation were introduced into the design field, resulting in the growth of computer- aided design. With the idea of designing by data, we began to manipulate data directly, and interpret data through design works. Machine Learning as a decision making tool has been widely used in many fields. It can be used to analyze large amounts of data and predict future changes. Generative Adversarial Network (GAN) is a model framework in machine learning. It’s specially designed to learn and generate output data with similar or identical characteristics. Pix2pixHD is a modified version of GAN that learns image data in pairs and generates new images based on the input. The author applied pix2pixHD in recognizing and generating architectural drawings, marking rooms with different colors and then generating apartment plans through two convolutional neural networks. Next, in order to understand how these networks work, the author analyzed their framework, and provided an explanation of the three working principles of the networks, convolution layer, residual network layer and deconvolution layer. Lastly, in order to visualize the networks in architectural drawings, the author derived data from different layer and different training epochs, and visualized the findings as gray scale images. It was found that the features of the architectural plan drawings have been gradually learned and stored as parameters in the networks. As the networks get deeper and the training epoch increases, the features in the graph become more concise and clearer. This phenomenon may be inspiring in understanding the designing behavior of humans.
keywords full paper, design study, generative design, ai + machine learning, ai & machine learning
series ACADIA
type paper
email
last changed 2022/06/07 07:49

_id ecaade2023_10
id ecaade2023_10
authors Sepúlveda, Abel, Eslamirad, Nasim and De Luca, Francesco
year 2023
title Machine Learning Approach versus Prediction Formulas to Design Healthy Dwellings in a Cold Climate
doi https://doi.org/10.52842/conf.ecaade.2023.2.359
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 359–368
summary This paper presents a study about the prediction accuracy of daylight provision and overheating levels in dwellings when considering different methods (machine learning vs prediction formulas), training, and validation data sets. An existing high-rise building located in Tallinn, Estonia was considered to compare the best ML predictive method with novel prediction formulas. The quantification of daylight provision was conducted according to the European daylight standard EN 17037:2018 (based on minimum Daylight Factor (minDF)) and overheating level in terms of the degree-hour (DH) metric included in local regulations. The features included in the dataset are the minDF and DH values related to different combinations of design parameters: window-to-floor ratio, level of obstruction, g-value, and visible transmittance of the glazing system. Different training and validation data sets were obtained from a main data set of 5120 minDF values and 40960 DH values obtained through simulation with Radiance and EnergyPlus, respectively. For each combination of training and validation dataset, the accuracy of the ML model was quantified and compared with the accuracy of the prediction formulas. According to our results, the ML model could provide more accurate minDF/DH predictions than by using the prediction formulas for the same design parameters. However, the amount of room combinations needed to train the machine-learning model is larger than for the calibration of the prediction formulas. The paper discuss in detail the method to use in practice, depending on time and accuracy concerns.
keywords Optimization, Daylight, Thermal Comfort, Overheating, Machine Learning, Predictive Model, Dwellings, Cold Climates
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia19_392
id acadia19_392
authors Steinfeld, Kyle
year 2019
title GAN Loci
doi https://doi.org/10.52842/conf.acadia.2019.392
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 392-403
summary This project applies techniques in machine learning, specifically generative adversarial networks (or GANs), to produce synthetic images intended to capture the predominant visual properties of urban places. We propose that imaging cities in this manner represents the first computational approach to documenting the Genius Loci of a city (Norberg-Schulz, 1980), which is understood to include those forms, textures, colors, and qualities of light that exemplify a particular urban location and that set it apart from similar places. Presented here are methods for the collection of urban image data, for the necessary processing and formatting of this data, and for the training of two known computational statistical models (StyleGAN (Karras et al., 2018) and Pix2Pix (Isola et al., 2016)) that identify visual patterns distinct to a given site and that reproduce these patterns to generate new images. These methods have been applied to image nine distinct urban contexts across six cities in the US and Europe, the results of which are presented here. While the product of this work is not a tool for the design of cities or building forms, but rather a method for the synthetic imaging of existing places, we nevertheless seek to situate the work in terms of computer-assisted design (CAD). In this regard, the project is demonstrative of a new approach to CAD tools. In contrast with existing tools that seek to capture the explicit intention of their user (Aish, Glynn, Sheil 2017), in applying computational statistical methods to the production of images that speak to the implicit qualities that constitute a place, this project demonstrates the unique advantages offered by such methods in capturing and expressing the tacit.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2018_286
id ecaade2018_286
authors Swahn, Erik
year 2018
title Markovian Drift - Iterative substitutional synthesis of 2D and 3D design data using Markov models of source data
doi https://doi.org/10.52842/conf.ecaade.2018.2.113
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 113-120
summary This paper describes a general method for synthesizing discrete 2D and 3D output by building probabilistic models of rasterized or voxelized training data, and subsequently synthesizing new data iteratively by substituting cells or groups of cells in accordance with a learned transition matrix. The process is non-deterministic, stochastic and unsupervised. The size of the source data and output is arbitrary, and the source and output data can have an arbitrary set of cell states. Possible variations of the process are discussed, as well as possible applications in design processes on multiple scales.
keywords Generative design; formal analysis; probabilistic models; Markov random fields; voxels; morphology
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id caadria2018_290
id caadria2018_290
authors Wang, Zhenyu, Shi, Jia, Yu, Chuanfei and Gao, Guoyuan
year 2018
title Automatic Design of Main Pedestrian Entrance of Building Site Based on Machine Learning - A Case Study of Museums in China's Urban Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.227
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 227-235
summary The main pedestrian entrance of the building site has a direct influence on the use of the buildings, so the selection of the main pedestrian entrance is very important in the process of architectural design. The correct selection of the main pedestrian entrance of building site depends on the experience of designers and environment data collected by designers, the process is time consuming and inefficient, especially when the building site located in complex urban environment. In order to improve the efficiency of design process, we used online map to collect museums information in China as training samples, and constructing artificial neural networks to predict the direction of the main pedestrian entrance. After the training, we get the prediction model with 79% prediction accuracy. Although the accuracy still need to be improved, it creates a new approach to analysis the main pedestrian entrance of the site and worth further researching.
keywords Artificial Neural Network (ANN); Main Pedestrian Entrance of Building Site; Automatic Design
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia18_434
id acadia18_434
authors Meibodi, Mania Aghaei ; Jipa, Andrei; Giesecke, Rena; Shammas, Demetris; Bernhard, Mathias; Leschok, Matthias; Graser, Konrad; Dillenburger, Benjamin
year 2018
title Smart Slab. Computational design and digital fabrication of a lightweight concrete slab
doi https://doi.org/10.52842/conf.acadia.2018.434
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 434-443
summary This paper presents a computational design approach and novel digital fabrication method for an optimized lightweight concrete slab using a 3D-printed formwork. Smart Slab is the first concrete slab fabricated with a 3D-printed formwork. It is a lightweight concrete slab, displaying three-dimensional geometric differentiation on multiple scales. The optimization of slab systems can have a large impact on buildings: more compact slabs allow for more usable space within the same building volume, refined structural concepts allow for material reduction, and integrated prefabrication can reduce complexity on the construction site. Among the main challenges is that optimized slab geometries are difficult to fabricate in a conventional way because non-standard formworks are very costly. Novel digital fabrication methods such as additive manufacturing of concrete can provide a solution, but until now the material properties and the surface quality only allow for limited applications. The fabrication approach presented here therefore combines the geometric freedom of 3D binderjet printing of formworks with the structural performance of fiber reinforced concrete. Using 3D printing to fabricate sand formwork for concrete, enables the prefabrication of custom concrete slab elements with complex geometric features with great precision. In addition, space for building systems such as sprinklers and Lighting could be integrated in a compact way. The design of the slab is based on a holistic computational model which allows fast design optimization and adaptation, the integration of the planning of the building systems, and the coordination of the multiple fabrication processes involved with an export of all fabrication data. This paper describes the context, design drivers, and digital design process behind the Smart Slab, and then discusses the digital fabrication system used to produce it, focusing on the 3D-printed formwork. It shows that 3D printing is already an attractive alternative for custom formwork solutions, especially when strategically combined with other CNC fabrication methods. Note that smart slab is under construction and images of finished elements can be integrated within couple of weeks.
keywords full paper, digital fabrication, computation, generative design, hybrid practices
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ijac201816406
id ijac201816406
authors As, Imdat; Siddharth Pal and Prithwish Basu
year 2018
title Artificial intelligence in architecture: Generating conceptual design via deep learning
source International Journal of Architectural Computing vol. 16 - no. 4, 306-327
summary Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph- based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.
keywords Architectural design, conceptual design, deep learning, artificial intelligence, generative design
series journal
email
last changed 2019/08/07 14:04

_id ecaade2018_399
id ecaade2018_399
authors Cutellic, Pierre
year 2018
title UCHRON - An Event-Based Generative Design Software Implementing Fast Discriminative Cognitive Responses from Visual ERP BCI
doi https://doi.org/10.52842/conf.ecaade.2018.2.131
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 131-138
summary This research aims at investigating BCI technologies in the broad scope of CAAD applications exploiting early visual cognition in computational design. More precisely, this paper will describe the investigation of key BCI and ML components for the implementation and development of a software supporting this research : Uchron. It will be organised as follows. Firstly, it will introduce the pursued interest and contribution that visual-ERP EEG based BCI application for Generative Design may provide through a synthetic review of precedents and BCI technology. Secondly, selected BCI components will be described and a methodology will be presented to provide an appropriate framework for a CAAD software approach. This section main focus is on the processing component of the BCI. It distinguishes two key aspects of discrimination and generation in its design and proposes a new model based on GAN for modulated adversarial design. Emphasis will be made on the explicit use of inference loops integrating fast human cognitive responses and its individual capitalisation through time in order to reflect towards the generation of design and architectural features.
keywords Human Computer Interaction; Neurodesign; Generative Design; Design Computing and Cognition; Machine Learning
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_292
id ecaade2018_292
authors Dennemark, Martin, Aicher, Andreas, Schneider, Sven and Hailu, Tesfaye
year 2018
title Generative Hydrology Network Analysis - A parametric approach to water infrastructure based urban planning
doi https://doi.org/10.52842/conf.ecaade.2018.2.327
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 327-334
summary Urban water systems need to be dimensioned well to be economical and distribute water in a good quality to all consumers. Their pipe sizes are dependent on demand and location of consuming nodes. Within uncertain development of cities, planning sustainable hydraulic networks is challenging. This paper explores, how the definition of urban design parameters can be supported using parametric urban design models and computational water network analysis. For the latter we developed new components for Grasshopper based on the open accessible water analysis tool EPANET. In two example cases we demonstrate potential applications of this tool for water-sensitive planning of emerging cities to find optimal positions for water sources or pipe diameters. In subsequent research, this could be used to derive probability-based recommendations for the dimensioning of a water network within uncertain growth.
keywords water infrastructure; urban planning; parametric design; uncertainty; emerging cities
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201816304
id ijac201816304
authors Miao, Yufan; Reinhard Koenig, Katja Knecht, Kateryna Konieva, Peter Buš and Mei-Chih Chang
year 2018
title Computational urban design prototyping: Interactive planning synthesis methods—a case study in Cape Town
source International Journal of Architectural Computing vol. 16 - no. 3, 212-226
summary This article is motivated by the fact that in Cape Town, South Africa, approximately 7.5 million people live in informal settlements and focuses on potential upgrading strategies for such sites. To this end, we developed a computational method for rapid urban design prototyping. The corresponding planning tool generates urban layouts including street network, blocks, parcels and buildings based on an urban designer’s specific requirements. It can be used to scale and replicate a developed urban planning concept to fit different sites. To facilitate the layout generation process computationally, we developed a new data structure to represent street networks, land parcellation, and the relationship between the two. We also introduced a nested parcellation strategy to reduce the number of irregular shapes generated due to algorithmic limitations. Network analysis methods are applied to control the distribution of buildings in the communities so that preferred neighborhood relationships can be considered in the design process. Finally, we demonstrate how to compare designs based on various urban analysis measures and discuss the limitations that arise when we apply our method in practice, especially when dealing with more complex urban design scenarios.
keywords Procedural modeling, spatial synthesis, generative design, urban planning
series journal
email
last changed 2019/08/07 14:03

_id ijac201816305
id ijac201816305
authors Patt, Trevor Ryan
year 2018
title Multiagent approach to temporal and punctual urban redevelopment in dynamic, informal contexts
source International Journal of Architectural Computing vol. 16 - no. 3, 199-211
summary This article presents design research speculating on computationally enabled planning approaches for urban sites where informal developments make conventional masterplans ineffectual. The project advances the thesis that the spatial complexity of urban sites can be effectively studied through a network or mesh representation and that rapid change in informal settlements is not an obstacle to planned redevelopment but can be addressed through dynamic modeling and punctual interventions. In this way, the rapid turnover of the built environment can be a mechanism through which to introduce directed planning without canceling out bottom-up actions. In the case study presented, we use a multiagent approach that is able to adapt to a continuously changing context. The agents are driven by weighted random walks and compute localized analyses of the morphology of the network of public space as they move. The information generated by the multiagent simulation is aggregated to identify potential modifications to the urban fabric, with an emphasis on pedestrian connectivity.
keywords Adaptive planning, multiagent systems, urban morphology, network analysis, spectral clustering, informal urbanism, generative design, participatory frameworks
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_w12
id ecaade2018_w12
authors Rahbar, Morteza
year 2018
title Application of Artificial Intelligence in Architectural Generative Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.071
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 71-72
summary In this workshop, data-driven models will be discussed and how they could change the way architects think, design and analyse. Both supervised and unsupervised learning models will be discussed and different projects will be referred as examples. Deep learning models are the third part of the workshop and more specifically, Generative Adversarial Networks will be mentioned in more detail. The GAN's open a new field of generative models in design which is based on data-driven process and we will go into detail with GANs, their branches and how we could test a sample architecture generative problem with GANs.
keywords Artificial Intelligence; Machine Learning; Generative Design; Knowledge based Design; GAN
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2018_1702
id sigradi2018_1702
authors Câmara Benevides, Caroline; Ribeiro Roquete, Suellen; Mourão Moura, Ana Clara; Romero Fonseca Motta, Silvio
year 2018
title Comparative Analysis of Geospatial Visualization Tools for Urban Zoning Planning
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 609-616
summary The collective management of urban environment is a challenging task. Although considering the individuals and their values helps to build environments that are closer to the user's expectations, the identification of these aspects is not an easy task. Considering the potential of exploring visualization tools to support public participation, this paper compares two different 3D tools based on parametric modeling. Reinforcing the relevancy of both methods in promoting the visualization through the process of regulating the urban landscape resulting from the urban parameters, this paper aims to evaluate their performances concerning time consumed, training requirements, results and applicability.
keywords 3D Modeling; Parametric Modeling; CityEngine; Grashopper3D; Visualization
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_347
id ecaade2018_347
authors Dokonal, Wolfgang
year 2018
title Do Training Bikes Dream of Electric Cities ?
doi https://doi.org/10.52842/conf.ecaade.2018.2.789
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 789-794
summary Virtual reality (VR), Augmented Reality (AR) and Mixed Reality is making the headlines in the newspapers and magazines today. But unlike 25 years ago when the first VR rage started with the first Cave Automatic Virtual Environments (CAVE) infrastructures VR is now a technique that is available at very low costs.Especially the recent advances and developments in low cost VR hardware mainly the Head mounted displays (HMD), in particular those that use mobile phones but also the PC based systems like the Oculus Rift and the HTC Vive together with recent software developments allow this change. Naturally this is based on the interest of the Gaming Industry and the big players in the smartphone industry. But at the moment there are nearly no tools for architects available within these systems. In our point of view there is the big potential that these technologies can give new opportunities to architects and designers to use VR and AR as part of their design toolbox and not only as a presentation tool. For us this is the most important aspect. In our projects we therefore try to develop a workflow that can be easily used even without programming and scripting skills.
keywords Virtual Reality; Interfaces
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2018_126
id caadria2018_126
authors Khean, Nariddh, Kim, Lucas, Martinez, Jorge, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title The Introspection of Deep Neural Networks - Towards Illuminating the Black Box - Training Architects Machine Learning via Grasshopper Definitions
doi https://doi.org/10.52842/conf.caadria.2018.2.237
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 237-246
summary Machine learning is yet to make a significant impact in the field of architecture and design. However, with the combination of artificial neural networks, a biologically inspired machine learning paradigm, and deep learning, a hierarchical subsystem of machine learning, the predictive capabilities of machine learning processes could prove a valuable tool for designers. Yet, the inherent knowledge gap between the fields of architecture and computer science has meant the complexity of machine learning, and thus its potential value and applications in the design of the built environment remain little understood. To bridge this knowledge gap, this paper describes the development of a learning tool directed at architects and designers to better understand the inner workings of machine learning. Within the parametric modelling environment of Grasshopper, this research develops a framework to express the mathematic and programmatic operations of neural networks in a visual scripting language. This offers a way to segment and parametrise each neural network operation into a basic expression. Unpacking the complexities of machine learning in an intermediary software environment such as Grasshopper intends to foster the broader adoption of artificial intelligence in architecture.
keywords machine learning; neural network; action research; supervised learning; education
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_083
id caadria2018_083
authors Luo, Dan, Wang, Jinsong and Xu, Weiguo
year 2018
title Robotic Automatic Generation of Performance Model for Non-Uniform Linear Material via Deep Learning
doi https://doi.org/10.52842/conf.caadria.2018.1.039
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 39-48
summary In the following research, a systematic approach is developed to generate an experiment-based performance model that computes and customizes properties of non-uniform linear materials to accommodate the form of designated curve under bending and natural force. In this case, the test subject is an elastomer strip of non-uniform sections. A novel solution is provided to obtain sufficient training data required for deep learning with an automatic material testing mechanism combining robotic arm automation and image recognition. The collected training data are fed into a deep combination of neural networks to generate a material performance model. Unlike most traditional performance models that are only able to simulate the final form from the properties and initial conditions of the given materials, the trained neural network offers a two-way performance model that is also able to compute appropriate material properties of non-uniform materials from target curves. This network achieves complex forms with minimal and effective programmed materials with complicated nonlinear properties and behaving under natural forces.
keywords Material performance model; Deep Learning; Robotic automation; Material computation; Neural network
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_k01
id ecaade2018_k01
authors Miller, Harlen
year 2018
title Cultivating Next-GEN Designers - The Systematic Transfer of Knowledge
doi https://doi.org/10.52842/conf.ecaade.2018.1.025
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 25-34
summary This paper examines the topic of transferring technical knowledge in an expedited fashion to designers, and/or students, through various training programs, tools, workflows and protocols, while highlighting the invaluable cost knowledge sharing has on global design institutions and offices. We will revisit the timeless tribulations of the 'educator', acknowledging the inherent limitations associated with transferring technical knowledge from generation to generation within both a design practice and on an academic level. The conceptual design, workflow and construction of 'wasl Tower', UNStudio's latest 308m landmark structure, located in the city center of Dubai, will be referenced as a case-study to illustrate the importance of transferring knowledge within a specific project setting.
keywords Talent Pooling; Education; Complexity; Efficiency; Workflow
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_478
id ecaadesigradi2019_478
authors Nardelli, Eduardo Sampaio
year 2019
title BIM training in Brazil - Preparing professionals for BIM adoption by public administration
doi https://doi.org/10.52842/conf.ecaade.2019.2.305
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 305-314
summary On May 2018 the Brazilian federal government published the Decree 9.377 setting a National Strategy for Information and Dissemination of Building Information Modelling - BIM to enable its adoption by public administration. This strategy has nine targets and among them the task of training professionals in BIM to support the demand that should be generated. A period between 2018 and 2021 has been planned to establish learning objectives and develop model disciplines, a process that, however, should not start from scratch because there are already some BIM training initiatives being performed in the country since the early 2000s. This paper has done an overview on this production highlighting some relevant conceptual contributions to this debate aiming to address challenges and possible ways to support the expected Architectural and Engineering courses restructuring.
keywords BIM, Education, Architecture, Engineering and Construction
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id ijac202018202
id ijac202018202
authors Pasquero, Claudia and Marco Poletto
year 2020
title Bio-digital aesthetics as value system of post-Anthropocene architecture
source International Journal of Architectural Computing vol. 18 - no. 2, 120-140
summary It is timely within the Anthropocene era, more than ever before, to search for a non-anthropocentric mode of reasoning, and consequently designing. The PhotoSynthetica Consortium, established in 2018 and including London-based ecoLogicStudio, the Urban Morphogenesis Lab (Bartlett School of Architecture, University College London) and the Synthetic Landscape Lab (University of Innsbruck, Austria), has therefore been pursuing architecture as a research-based practice, exploring the interdependence of digital and biological intelligence in design by working directly with non-human living organisms. The research focuses on the diagrammatic capacity of these organisms in the process of growing and becoming part of complex bio-digital architectures. A key remit is training architects’ sensibility at recognising patterns of reasoning across disciplines, materialities and technological regimes, thus expanding the practice’s repertoire of aesthetic qualities. Recent developments in evolutionary psychology demonstrate that the human sense of beauty and pleasure is part of a co-evolutionary system of mind and surrounding environment. In these terms, human senses of beauty and pleasure have evolved as selection mechanisms. Cultivating and enhancing them compensate and integrate the functions of logical thinking to gain a systemic view on the planet Earth and the dramatic changes it is currently undergoing. This article seeks to illustrate, through a series of recent research projects, how a renewed appreciation of beauty in architecture has evolved into an operational tool to design and measure its actual ecological intelligence.
keywords Bio-digital, bio-computation, bio-city, effectiveness, empathy, impact, sensing
series journal
email
last changed 2020/11/02 13:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_68619 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002