CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2018_210
id ecaade2018_210
authors Ezzat, Mohammed
year 2018
title A Computational Tool for Mapping the Users' Urban Cognition - A Framework and a Representation for the Evolutionary Optimization of the Fuzzy Binary Relation between the Urban Conceptions of "Us" and "Others"
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 667-676
doi https://doi.org/10.52842/conf.ecaade.2018.1.667
summary The paper proposes a computational tool for simulating the users' urban cognitive systems, or more specifically the long-term memory associated with the knowledge of urbanism and its related urban visual features. The tool builds on our comprehensive theory of Urbanism, which presents a monolithic, structured, comprehensive, professional conception of Urbanism based on which any relativistic users' urban conceptions could be predicted as a restructuring of the professional conception. These versatile relativistic conceptions would emerge based on a nurturing environment, which is a conception of the empirical/anthropological collected data of the intended users' reflections against their preferred constructed urban environments. Once the users' conceptions of Urbanism are formulated, which is the first phase of the simulation, the users' impressions against any examined urban constructs are attainable, which is the second phase of the simulation. The two phases, the framework, would be monolithically represented by a proposed novel cellular graph. The proposed computational tool is thought of as a robust technique for the computational incorporation of the users' urban identity, and some of its constituents could be considered as a needed common platform of communication for a successful Human-Computer interaction in the field of urban analysis/design.
keywords a comprehensive model of Urbanism; a default professional conception of Urbanism; the relativistic users' conceptions of Urbanism ; recognized extracted urban features ; the users' urban identity; A comprehensive theory for space syntax:
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_165
id ecaade2018_165
authors Fisher-Gewirtzman, Dafna and Bruchim, Elad
year 2018
title Considering Variant Movement Velocities on the 3D Dynamic Visibility Analysis (DVA) - Simulating the perception of urban users: pedestrians, cyclists and car drivers.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 569-576
doi https://doi.org/10.52842/conf.ecaade.2018.2.569
summary The objective of this research project is to simulate and evaluate the effect of movement velocity and cognitive abilities on the visual perception of three groups of urban users: pedestrians, cyclists and car drivers.The simulation and analysis is based on the 3D Dynamic Visual Analysis (DVA) (Fisher-Gewirtzman, 2017). This visibility analysis model was developed in the Rhinoceros and Grasshopper software environments and is based on the conceptual model presented in Fisher-Gewirtzman (2016): a 3D Line of Sight (LOS) visibility analysis, taking into account the integrated effect of the 3D geometry of the environment and the variant elements of the view (such as the sky, trees and vegetation, buildings and building types, roads, water etc.). In this paper, the current advancement of the existing model considers the visual perception of human users employing three types of movement in the urban environment--pedestrians, cyclists and drivers--is explored.We expect this research project to exemplify the contribution of such a quantification and evaluation model to evaluating existing urban structures, and for supporting future human perception-based urban design processes.
keywords visibility analysis and simulation; predicting perception of space; movement in the urban environment; pedestrians; cyclists; car drivers
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_294
id acadia18_294
authors Kieffer, Lynn; Nicholas, Paul
year 2018
title Pneumatically Actuated Material. Exploration of the mophospace of an adaptable system of soft actuators
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 294-301
doi https://doi.org/10.52842/conf.acadia.2018.294
summary This research in progress investigates a design and fabrication method of an adaptable and programmable composite material in an embodied computation system. It develops a workflow for a behavior-based model, the exploration of the morpho-space associated with the combinatorial assembly and the actuation of soft elements. The aggregation of individually actuatable and soft units in a system creates a large potential regarding adaptability, flexibility and reconfigurability, through a non-rigid and non-mechanical system. The cells are developed through a process of prototyping on origami and auxetic pattern inspired soft robotic elements. Every soft cell is pneumatically actuated through a negative pressure environment. The computational simulation is informed by the prototyping process and its findings. The simulation-based design of such an assembled system allows prediction of the aggregated shape and outputs a sequencing table, describing the actuation status of every cell and can create a tool to communicate between material and computational system
keywords work in progress,pneumatic actuation, adaptable soft material
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id acadia18_232
id acadia18_232
authors Kilian, Axel
year 2018
title The Flexing Room Architectural Robot. An Actuated Active-Bending Robotic Structure using Human Feedback
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 232-241
doi https://doi.org/10.52842/conf.acadia.2018.232
summary Advances in autonomous control of object-scale robots, both anthropomorphic and vehicular, are posing new human–machine interface challenges. In architecture, very few examples of autonomous inhabitable robotic architecture exist. A number of factors likely contribute to this condition, among them the scale and cost of architectural adaptive systems, but on a more fundamental conceptual level also the questions of how architectural robots would communicate with their human inhabitants. The Flexing Room installation is a room-sized actuated active-bending skeleton structure. It uses rudimentary social feedback by counting people to inform its behavior in the form of actuated poses of the room enclosure. An operational full-scale prototype was constructed and tested. To operate it no geometric-based simulation was used; the only communication between computer and structure was in sending values for the air pressure settings and in gathering sensor feedback. The structure’s physical state was resolved through the embodied computation of its interconnected parts, and the people-counting sensor feedback influences its next action. Future work will explore the development of learning processes to improve the human–machine coexistence in space.
keywords full paper, fabrication & robotics, non-production robotics, materials/adaptive systems, flexible structures
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id acadia18_322
id acadia18_322
authors Klemmt, Christoph; Gheorghe, Andrei; Pantic, Igor; Hornung, Philipp; Sodhi, Rajat
year 2018
title Engineering Design Tropisms. Utilization of a bamboo-resin joint for voxelized network geometries
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 322-327
doi https://doi.org/10.52842/conf.acadia.2018.322
summary We propose the combination of the traditional construction material bamboo with a novel epoxy-resin joint. The joint forms a bending-resisting connection that eliminates the need for diagonal members. This allows its utilization along rectangular grids as was tested with the design of a prototype structure that occupies a voxelized space. The design process used an agent-based simulation to mediate between design intent, site and structural considerations. The prototype was constructed with a robotic milling of the components and forms a successful application of the joints and design methodology.
keywords work in progress, digital fabrication, digital materials, robotic production, fabrication & robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id ecaaderis2018_106
id ecaaderis2018_106
authors Kourniatis, Nikolaos, Christidi, Nikoletta, Fakiri, Ioanna, Tsoumpri, Dimitra, Tsoukalas, Nikolaos and Karras, Evaggelos
year 2018
title The Geometrical Structure of new Architectural Object - The role of meta-mechanics of Holography in its formation
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 29-38
keywords In recent years there has been a gradually increasing interest in the terms on which the design and geometrical representation of the architectural object is based. ?he true challenge lies in the development of a methodology or mechanism which, having as its starting point the traditional object geometrical representation practices, will allow for a combination of new technologies towards creating new visual messages. In this research, the process of putting together a new architectural object, the digital hologram, will be seen as one such mechanism. The new views and strategies on space are open to treating spatial constructions, as a restructuring of the structures that could bring about changes for more favorable conditions for the representation of the architectural form. Thus, the strategies of architectural pioneering are judged by their ability to develop new procedures that are capable of reversing.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_230
id ecaade2018_230
authors Kreutzberg, Anette
year 2018
title Visualising Architectural Lighting Concept with 360° Panoramas
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 745-752
doi https://doi.org/10.52842/conf.ecaade.2018.2.745
summary This paper presents the establishment and refinement of a visualisation workflow based on initial learnings from introducing mobile Virtual Reality (VR) as representational medium for visualising and visually evaluating architectural lighting concepts using rendered 360° panoramas. Four student projects are described, each with a different aim and approach towards visualising architectural light in space: Two projects aiming at conveying reality with physically based lighting simulations and two projects with an artistic approach to conveying light impressions. The 360° panoramas were used at low resolution during the design process to qualify the projects, and the final panoramas were presented with great success as a supplement to visualisations, diagrams, technical drawings and physical models at Bachelor and Master exams. The benefits of using familiar simulation and render software together with low cost, accessible and portable VR HMD's in the authors opinion far outweighs the reduced Field of View, lower frame-rate, lack of parallax and dynamic Point of View compared to realtime rendered high end VR.
keywords Architectural lighting; 360° panorama; Virtual Reality; Visualisation workflow
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201816305
id ijac201816305
authors Patt, Trevor Ryan
year 2018
title Multiagent approach to temporal and punctual urban redevelopment in dynamic, informal contexts
source International Journal of Architectural Computing vol. 16 - no. 3, 199-211
summary This article presents design research speculating on computationally enabled planning approaches for urban sites where informal developments make conventional masterplans ineffectual. The project advances the thesis that the spatial complexity of urban sites can be effectively studied through a network or mesh representation and that rapid change in informal settlements is not an obstacle to planned redevelopment but can be addressed through dynamic modeling and punctual interventions. In this way, the rapid turnover of the built environment can be a mechanism through which to introduce directed planning without canceling out bottom-up actions. In the case study presented, we use a multiagent approach that is able to adapt to a continuously changing context. The agents are driven by weighted random walks and compute localized analyses of the morphology of the network of public space as they move. The information generated by the multiagent simulation is aggregated to identify potential modifications to the urban fabric, with an emphasis on pedestrian connectivity.
keywords Adaptive planning, multiagent systems, urban morphology, network analysis, spectral clustering, informal urbanism, generative design, participatory frameworks
series journal
email
last changed 2019/08/07 14:03

_id ecaade2018_331
id ecaade2018_331
authors Trento, Armando and Fioravanti, Antonio
year 2018
title Contextual Capabilities Meet Human Behaviour - Round the peg and square the hole
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 613-620
doi https://doi.org/10.52842/conf.ecaade.2018.1.613
summary To improve environmental wellbeing and productivity, design innovation focuses on human's use-process, evolving individual space to flexible and specialized ones, according to the users' tasks - activity-based. BIM models supports sophisticated behaviours' simulation such as energy, acoustics, although it is not able to manage space use-processes. The present paper rather than a report of a case study or the presentation of a new methodology wants to contribute, together with previous works, in sketching a theroretical framework within which it is possible to compute the interaction between users and spaces (and vice versa). The quest is to reflect on possible paths for engineering knowledge and understanding, providing a BIM system the semantic information required to operate adaptively and achieve robust and innovative goal-directed behavior. Compared to current research on simulation systems, this research approach links Context, intended as spaces capabilities to Actor's Behavioural Knowledge including formalization of personality typologies and profiled behavioural patterns. By means of a classical problem solving metaphor, the "squared peg in a round hole" one, multiple categories for goal achievement are sketched, based on reciprocal Actors and Context behaviour adaptation.
keywords Use-process Knowledge; Behavioural Knowledge; Use Simulation; Cognitive Computing
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia18_186
id acadia18_186
authors Yin, Hao; Guo, Zhe; Zhao, Yao; Yuan, Philip F.
year 2018
title Behavior Visualization System Based on UWB Positioning Technology
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 186-195
doi https://doi.org/10.52842/conf.acadia.2018.186
summary This paper takes behavioral performance as a starting point and uses ultra-wideband (UWB) positioning technology and visualization methods to accurately collect and present in-place behavioral data so as to explore the behavioral characteristics of space users. In this process, we learned the observation, quantification, and presentation of behavioral data from the evolution of behavioral research. Secondly, after a comparative analysis of four types of indoor positioning technologies, we selected UWB-positioning technology and the JavaScript programming language as the development tools for a behavior visualization system. Next, we independently developed the behavior visualization system, which required a deep understanding of the working principle of UWB technology and the visualization method of the JavaScript programming language. Finally, the system was applied to an actual space, collecting and presenting users’ behavioral characteristics and habits in order to verify the applicability of the system in the field of behavioral research.
keywords full paper, design tools, ai + machine learning, big data, behavioral performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:57

_id ecaade2018_315
id ecaade2018_315
authors Koehler, Daniel, Abo Saleh, Sheghaf, Li, Hua, Ye, Chuwei, Zhou, Yaonaijia and Navasaityte, Rasa
year 2018
title Mereologies - Combinatorial Design and the Description of Urban Form.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
doi https://doi.org/10.52842/conf.ecaade.2018.2.085
summary This paper discusses the ability to apply machine learning to the combinatorial design-assembly at the scale of a building to urban form. Connecting the historical lines of discrete automata in computer science and formal studies in architecture this research contributes to the field of additive material assemblies, aggregative architecture and their possible upscaling to urban design. The following case studies are a preparation to apply deep-learning on the computational descriptions of urban form. Departing from the game Go as a testbed for the development of deep-learning applications, an equivalent platform can be designed for architectural assembly. By this, the form of a building is defined via the overlap between separate building parts. Building on part-relations, this research uses mereology as a term for a set of recursive assembly strategies, integrated into the design aspects of the building parts. The models developed by research by design are formally described and tested under a digital simulation environment. The shown case study shows the process of how to transform geometrical elements to architectural parts based merely on their compositional aspects either in horizontal or three-dimensional arrangements.
keywords Urban Form; Discrete Automata ; Combinatorics; Part-Relations; Mereology; Aggregative Architecture
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2018_193
id ecaade2018_193
authors Ostrowska-Wawryniuk, Karolina and Nazar, Krzysztof
year 2018
title Generative BIM Automation Strategies for Prefabricated Multi-Family Housing Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 247-256
doi https://doi.org/10.52842/conf.ecaade.2018.1.247
summary The increasing housing shortage in contemporary Poland calls for efficient ways of design and construction. In the context of time efficiency and shrinking manpower, prefabrication is considered as one of the means of introducing low and middle income housing to the market. The article presents the process of developing an experimental tool for aiding multi-family housing architectural design with the use of prefabrication. We use the potential of BIM technology as a flexible environment for comparing multiple design options and, therefore, supporting the decision-making process. The presented experiment is realized in the Autodesk Revit environment and incorporates custom generative scripts developed in Dynamo-for-Revit and Grasshopper. The prototype tool analyzes an input Revit model and simulates a prefabricated alternative based on the user-specified boundary conditions. We present our approach to the analyzing and the splitting of the input model as well as five different strategies of performing the simulation within the Revit environment.
keywords Building Information Modeling; generative BIM; residential building design; prefabrication; design automation; Dynamo
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2018_393
id ecaade2018_393
authors Serrano Salazar, Salvador, Carrasco Hortal, José, Morales Menárguez, Francesc and Gutiérrez Salazar, Juan Pablo
year 2018
title Cooperative Trees by Adding Inosculated and Discrete Definitions to a DLA Design
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 103-112
doi https://doi.org/10.52842/conf.ecaade.2018.2.103
summary This paper presents a method to generate free-form branched structures from a small number of different constructive elements, based on the postulates of discrete or combinatorial design. The research is based on the study of fractal growth as a generator of complex tree-like structures, using references from other scientific approaches in which the possibilities of the DLA (diffusion-limited aggregation) model have been explored. The proposed method uses the Grasshopper visual programming language, and incorporates new topological strategies to improve the performance or robustness of the system through tree-tree (inosculation) and tree-soil (aerial roots) cooperations. The simulation demonstrates the effectiveness of the proposed method and its potential for the construction of structures with complex geometries from a discrete set of knots and bars and bioinspired strategies. The paper includes a review of the chosen design principles, the developed methodology and a recent physical test in Medellín (Colombia).
keywords DLA, discrete design, inosculation, branching structures, virtual-real models
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia18_56
id acadia18_56
authors Suzuki, Seiichi; Knippers, Jan
year 2018
title Digital Vernacular Design. Form-finding at the edge of realities
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 56-65
doi https://doi.org/10.52842/conf.acadia.2018.056
summary Introducing design innovation within structural systems normally requires the development of novel design strategies for exploring different solutions in which optimized shapes can be derived from material behaviors and force principles. This condition is particularly important for bending- and form-active structures where intricate geometrical arrangements can be produced by combining simple discrete components. The use of real-time physics-based simulations as design tools has rapidly become popular for addressing these problems. However, all numerical methods tend to lack the interactive and playful characteristics that are intrinsic in traditional analogue methods. Because of this, the intuitive and creative characteristics of digital design processes are limited, and therefore a gap between analogue and digital design practices is progressively created.

In this paper, we present a design approach we call "digital vernacular," which involves the combination of interactive and playful characteristics of empirical and experimental methods within numerical models. This approach originates from the technical framework of topology-driven form-finding, which addresses the activation of topologic spaces during real-time physics-based simulations. The presented study is placed within a larger body of research regarding simulation-based design and aims to bridge the gap between analogue and digital design practices. Two computational frameworks based on particle-based methods and a set of research projects are presented to illustrate our design approach.

keywords work in progress, design methods and information processing, form finding, physics, representation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2018_w06
id ecaade2018_w06
authors Wortmann, Thomas
year 2018
title Beyond Genetic Algorithms - Understanding Simulation-based Optimization
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 73-74
doi https://doi.org/10.52842/conf.ecaade.2018.1.073
summary This workshop introduces simulation-based (i.e., black-box) optimization algorithms in Grasshopper in terms of their optimization strategies and performance. Through benchmarking on example problems defined by the participants, the workshop questions the almost exclusive reliance on Genetic Algorithms in Architectural Design Optimization.
keywords Simulation-based Optimization; Genetic Algorithms; Benchmarking
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2018_016
id caadria2018_016
authors Zahedi, Ata and Petzold, Frank
year 2018
title Utilization of Simulation Tools in Early Design Phases Through Adaptive Detailing Strategies
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 11-20
doi https://doi.org/10.52842/conf.caadria.2018.2.011
summary Decisions taken at early stages of building design have a significant effect on the planning steps for the entire lifetime of the project as well as the performance of the building throughout its lifecycle (MacLeamy 2004). Building Information Modelling (BIM) could bring forward and enhance the planning and decision-making processes by enabling the direct reuse of data hold by the model for diverse analysis and simulation tasks (Borrmann et al. 2015). The architect today besides a couple of simplified simulation tools almost exclusively uses his know-how for evaluating and comparing design variants in the early stages of design. This paper focuses on finding new ways to facilitate the use of analytical and simulation tools during the important early phases of conceptual building design, where the models are partially incomplete. The necessary enrichment and proper detailing of the design model could be achieved by means of dialogue-based interaction concepts with analytical and simulation tools through adaptive detailing strategies. This concept is explained using an example scenario for design process. A generic description of the aimed dialog-based interface to various simulation tools will also be discussed in this paper using an example scenario.
keywords BIM; Early Design Stages; Adaptive Detailing ; Communication Protocols; Design Variants
series CAADRIA
email
last changed 2022/06/07 07:57

_id ascaad2023_083
id ascaad2023_083
authors Borges, Marina; Karantino, Lucas; Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 293-304.
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to prioritize pedestrians and promote active mobility, giving them priority and encouraging walking, as presented in the concepts of TOD (Transit-Oriented Development). Although the master plan suggests that areas located in the regional centrality of Belo Horizonte are enhancing active mobility, residents may still need to use individual or public transportation due to long distances when accessing basic services on foot. In peripheral areas of the city of Belo Horizonte, are there favorable walkability conditions for the residents? Thus, the aim of this research is to use digital technologies to investigate, through a parametric performative model, the quality of the existing routes, with a focus on the peripheral areas of the city. Based on the results obtained, it will be possible to conclude whether there are discrepancies between what is presented in the master plan and, ultimately, to identify potential solutions for the area based on metrics that qualify and enhance active mobility. These solutions may vary according to the specific needs of the location.
series ASCAAD
email
last changed 2024/02/13 14:40

_id ijac201816103
id ijac201816103
authors Alani, Mostafa W.
year 2018
title Algorithmic investigation of the actual and virtual design space of historic hexagonal-based Islamic patterns
source International Journal of Architectural Computing vol. 16 - no. 1, 34-57
summary This research challenges the long-standing paradigm that considers compositional analysis to be the key to researching historical Islamic geometric patterns. Adopting a mathematical description shows that the historical focus on existing forms has left the relevant structural similarities between historical Islamic geometric patterns understudied. The research focused on the hexagonal-based Islamic geometric patterns and found that historical designs correlate to each other beyond just the formal dimension and that deep, morphological connections exist in the structures of historical singularities. Using historical evidence, this article identifies these connections and presents a categorization system that groups designs together based on their “morphogenetic” characteristics.
keywords Islamic geometric patterns, morphology, computations, digital design, algorithmic thinking
series journal
email
last changed 2019/08/07 14:03

_id ijac201816406
id ijac201816406
authors As, Imdat; Siddharth Pal and Prithwish Basu
year 2018
title Artificial intelligence in architecture: Generating conceptual design via deep learning
source International Journal of Architectural Computing vol. 16 - no. 4, 306-327
summary Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph- based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.
keywords Architectural design, conceptual design, deep learning, artificial intelligence, generative design
series journal
email
last changed 2019/08/07 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_172893 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002