CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 20

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2019_240
id caadria2019_240
authors Dorta, Tomás, Safin, Stéphane, Boudhraâ, Sana and Beaudry Marchand, Emmanuel
year 2019
title Co-Designing in Social VR - Process awareness and suitable representations to empower user participation
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 141-150
doi https://doi.org/10.52842/conf.caadria.2019.2.141
summary To allow non-designers' involvement in design projects new methods are needed. Co-design gives the same opportunity to all the multidisciplinary participants to co-create ideas simultaneously. Nevertheless, current co-design processes involving such users tend to limit their contribution to the proposal of basic design ideas only through brainstorming. The co-design approach needs to be enhanced by a properly suited representational ecosystem supporting active participation and by conscious use of structured verbal exchanges giving awareness of the creative process. In this respect, we developed two social virtual reality co-design systems, and a co-design verbal exchange methodology to favour participants' awareness of the co-creative process. By using such representations and verbal exchanges, participants could co-create with more ease by benefiting from being informed of the process and from the collective immersion, empowering their participation. This paper presents the rationale behind this approach of using Social VR in co-design and the feedback of three co-design workshops.
keywords Social VR; Project awareness ; Representational ecosystem; User participation; Co-design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2019_091
id caadria2019_091
authors Ilha Pereira, Bianca
year 2019
title Master Planning with Urban Algorithms - Urban parameters, optimization and scenarios
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 51-60
doi https://doi.org/10.52842/conf.caadria.2019.2.051
summary The analogue definition of studies on urban planning can be very time consuming in the top-down process of designing. Keeping in mind the rapid urbanization we had in Brazil, and the continuous migration to the capital of the country located in Federal District, our aim is to use digital aid models that could be flexible and make quicker responses to urban issues. Algorithms as finite sequences of instructions have broad application. Designing cities demands the interpretation of variables linked to the territory and takes into account the current legislation in order to develop urban plans. This research creates an algorithmic basis using Grasshopper® to propose a mathematical solution for interpreting the existing space, and from it, to model urban scenes. The territorial analysis uses the user's perspective, with the interpretation of pre-existing characteristics, such as main roads, function and equipment distributions that make up the basic services. It is based on parameters extracted from theoretical repertoire and community facilities optimization through Galapagos evolutionary solver to deliver different proposed scenarios.
keywords urban algorithms; master planning; Grasshopper; Galapagos; Federal District
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia20_142p
id acadia20_142p
authors Kilian, Axel
year 2020
title The Flexing Room
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 142-147
summary Robotics has been largely confined to the object category with fewer examples at the scale of buildings. Robotic buildings present unique challenges in communicating intent to the enclosed user. Precedent work in architectural robotics explored the performative dimension, the playful and interactive qualities, and the cognitive challenges of AI systems interacting with people in architecture. The Flexing Room robotic skeleton was installed at MIT at its full designed height for the first time and tested for two weeks in the summer of 2019. The approximately 13-foot-tall structure is comprised of 36 pneumatic actuators and an active bend fiberglass structure. The full height allowed for a wide range of postures the structure could take. Acoustic monitoring through Piezo pickup mics was added that allowed for basic rhythmic responses of the structure to people tapping or otherwise triggering the vibration sensors. Data streams were collected synchronously from Kinect skeleton tracking, piezo pickup mics, camera streams, and posture data. The emphasis in this test period was first to establish reliable hardware operations at full scale and second to record correlated data streams of the sensors installed in the structure together with the actuation triggers and the human poses of the inhabitant. The full-scale installation of hardware was successful and proved the feasibility of the structural and actuation approach previously tested on a one-level setup. The range of postures was increased and more transparent for the occupant. The perception of the structure as space was also improved as the system reached regular ceiling height and formed a clearer architectural scale enclosure. The ambition of communicating through architectural postures has not been achieved yet, but promising directions emerged from the test and data collection
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id cf2019_059
id cf2019_059
authors Ma, Lisha ; Xiaofang Yuan, Yu Wu and Wuzhen Zhu
year 2019
title A National Pattern Generation Method Based on Cultural Design Genetic Derivation
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 500
summary It is a great challenge to digitally generate emotionally satisfying patterns with national style characteristics to meet diversified consumer demands for national patterns. As the core of national culture’s gestation, growth and development, cultural genes can realize cultural inheritance and maintain national identity . From the view of design, the basic feature elements of cultural genes are extracted by original national pattern deconstruction and semantically summarized to form specific cultural design genes suitable for the rapid design of national pattern. Further, the topology principle and ComputerAided design is introduced to simultaneously generate pattern shapes using Self-Crossing and Cross-Crossing transformation by shape grammar. Then, the pattern elements are arranged according to the initial ethnic pattern composition rules to generate new series of ethnic patterns. Finally, Chinese Tibetan pattern is patterned as an example to demonstrate that this research can creates patterns faster and in line with the user's intent.
keywords National pattern, Cultural design gene, Pattern deconstruction, Shape grammar, Computer-Aided design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_201
id ecaadesigradi2019_201
authors Torreblanca-Díaz, David A., Pati?o, Ever, Valencia-Escobar, Andrés and Urdinola, Diana
year 2019
title Form-finding methodology as strategy for formative research in industrial design education - Experimental techniques for the early creative phases of the product design process
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-54
doi https://doi.org/10.52842/conf.ecaade.2019.1.045
summary The experimental work of Antoni Gaudí and Frei Otto have been the precedents of what is currently called form-finding, a methodology based on rules and physical forces of nature that promotes principles of transformation as a result of the relationship between form, material and structure. This text shows the first results of the research titled as Form-finding methodology as strategy for formative research in industrial design education, with an empirical-analytical approach through action-research based method and using collaborative-participatory tools. As a result of the analysis of different cases in the first stage of the research, a basic methodological proposal is made, this methodological proposal is aimed to find new research possibilities for the identification of morphological characteristics to be used in design projects in the early creative phases (ideation and experimentation); the methodological proposal stages are the following: selection of technique, design of the experimentation, experimentation, analysis and discussion.
keywords Form-finding; Experimental morphology; Industrial design education; Formative research; Action-research
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id cf2019_066
id cf2019_066
authors Zheng, Hao ; Zhe Guo and Yang Liang
year 2019
title Iterative Pattern Design via Decodes Python Scripts in Grasshopper
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 526-537
summary With the rapid development of parametric design, Grasshopper, as a visual programming tool for architects, has been widely used. However, although Grasshopper is powerful for data processing, there is a weakness that the data only flows linearly from the first component to the last component, which means it’s impossible to update the data iteratively by loop structure in native Grasshopper. So here, we introduce a Python based scripting plug-in Decodes, adding the function of loop construct into Grasshopper while integrating the basic graphical operations with faster mathematical matrix calculation. What’s more, in order to bring Decodes into play as far as possible, four iterative patterns are researched and designed through Decodes scripting, demonstrating the strength and necessity of loop construct. The patterns include iterative subdivision patterns (center tiling and pinwheel tiling) and iterative growing patterns (semi-regular tiling and swarm behavior). Also, the core parts of their codes are revealed and deciphered in this article.
keywords Algorithmic design; Iterative pattern; Programming;
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_555
id ecaadesigradi2019_555
authors Bomfim, Kyane and Tavares, Felipe
year 2019
title Building facade optimization for maximizing the incident solar radiation
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 171-180
doi https://doi.org/10.52842/conf.ecaade.2019.2.171
summary The technological breakthrough on photovoltaic facades and the high potential for installing photovoltaic (PV) systems in the city of Salvador are the motivation for this article. This case study explores the feasibility of implementing solar energy technology on a building facade, proposing a design method for optimizing insolation performance by the form-finding process in a parameterized shape. The goal was to generate a parametric design workflow, in which it could be found some facade shapes, generating triangle and quadrilateral supporting grids, leading to better results in the total amount of radiation in comparison to the basic flat facade. In these supporting grids were evaluated also the fitting in the distribution of quadrilateral commercial PV cells, measuring its geometric compatibility. By the results, it could be verified the gains and losses in PV potential in several instances obtained by the form-finding process, as the potentials to consider this in the design of every building.
keywords Radiation skydome; Shape parameterization; Form-finding; Genetic Algorithm; PV facade
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id cf2019_005
id cf2019_005
authors Eisenstadt, Viktor; Klaus-Dieter Althoff and Christoph Langenhan
year 2019
title Supporting Architectural Design Process with FLEA A Distributed AI Methodology for Retrieval, Suggestion, Adaptation, and Explanation of Room Configurations
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 24
summary The artificial intelligence methods, such as case-based reasoning and artificial neural networks were already applied to the task of architectural design support in a multitude of specific approaches and tools. However, modern AI trends, such as Explainable AI (XAI), and additional features, such as providing contextual suggestions for the next step of the design process, were rarely considered an integral part of these approaches or simply not available. In this paper, we present an application of a distributed AI-based methodology FLEA (Find, Learn, Explain, Adapt) to the task of room configuration during the early conceptual phases of architectural design. The implementation of the methodology in the framework MetisCBR applies CBR-based methods for retrieval of similar floor plans to suggest possibly inspirational designs and to explain the returned results with specific explanation patterns. Furthermore, it makes use of a farm of recurrent neural networks to suggest contextually suitable next configuration steps and to present design variations that show how the designs may evolve in the future. The flexibility of FLEA allows for variational use of its components in order to activate the currently required modules only. The methodology was initialized during the basic research project Metis (funded by German Research Foundation) during which the architectural semantic search patterns and a family of corresponding floor plan representations were developed. FLEA uses these patterns and representations as the base for its semantic search, explanation, next step suggestion, and adaptation components. The methodology implementation was iteratively tested during quantitative evaluations and user studies with multiple floor plan datasets.
keywords Room con?guration, Distributed AI, Case-based reasoning, Neural networks, Explainable AI
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:11

_id ijac201917401
id ijac201917401
authors Kabošová, Lenka; Isak Foged, Stanislav Kmet’ and Dušan Katunský
year 2019
title Hybrid design method for wind-adaptive architecture
source International Journal of Architectural Computing vol. 17 - no. 4, 307-322
summary The linkage of individual design skills and computer-based capabilities in the design process offers yet unexplored environment-adaptive architectural solutions. The conventional perception of architecture is changing, creating a space for reconfigurable, “living” buildings responding, for instance, to climatic influences. Integrating the element of wind to the architectural morphogenesis process can lead toward wind-adaptive designs that in turn can enhance the wind microclimate in their vicinity. Geometric relations coupled with material properties enable to create a tensegrity- membrane structural element, bending in the wind. First, the properties of such elements are investigated by a hybrid method, that is, computer simulations are coupled with physical prototyping. Second, the system is applied to basic- geometry building envelopes and investigated using computational fluid dynamics simulations. Third, the findings are transmitted to a case study design of a streamlined building envelope. The results suggest that a wind-adaptive building envelope plays a great role in reducing the surface wind suction and enhancing the wind microclimate.
keywords Wind, computational fluid dynamics, tensegrity structure, responsive envelope, computational design
series journal
email
last changed 2020/11/02 13:34

_id cf2019_042
id cf2019_042
authors Khan, Sumbul; Bige Tuncer, Ramanathan Subramanian and Lucienne Blessing
year 2019
title 3D CAD modeling using gestures and speech: Investigating CAD legacy and non-legacy procedures
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 347-366
summary 3D CAD modeling using natural interaction techniques necessitates greater research into the modeling procedures employed by users. In a previously conducted experiment, we elicited speech and gestures input for 3D CAD modeling tasks for conceptual design. In this paper, we examine the 3D modeling procedures articulated by the participants, using gestures and speech, for creating basic 3D models of increasing complexity. We identified 3D modeling procedures and characterized them as CAD legacy and non-legacy procedures. Results show that (1) non-legacy procedures were employed by a considerable number of participants who had fair and high proficiency in CAD and (2) Non-legacy procedures with fewer steps were rated favorably by participants. Based on the results, we provide recommendations on key aspects of non-legacy procedures that need to be incorporated in CAD modeling programs to facilitate speech and gestural input.
keywords Gestures, 3D CAD modeling, Human Computer Interaction, computer aided design, natural interaction
series CAAD Futures
email
last changed 2019/07/29 14:15

_id cf2019_004
id cf2019_004
authors Kim, Jinsung; Jaeyeol Song and Jin-Kook Lee
year 2019
title Recognizing and Classifying Unknown Object in BIM using 2D CNN
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 23
summary This paper aims to propose an approach to automated classifying building element instance in BIM using deep learning-based 3D object classification algorithm. Recently, studies related to checking or validating engine of BIM object for ensuring data integrity of BIM instances are getting attention. As a part of this research, this paper train recognition models that are targeted at basic building element and interior element using 3D object recognition technique that uses images of objects as inputs. Object recognition is executed in two stages; 1) class of object (e.g. wall, window, seating furniture, toilet fixture and etc.), 2) sub-type of specific classes (e.g. Toilet or Urinal). Using the trained models, BIM plug-in prototype is developed and the performance of this AI-based approach with test BIM model is checked. We expect this recognition approach to help ensure the integrity of BIM data and contribute to the practical use of BIM.
keywords 3D object classification, Building element, Building information modeling, Data integrity, Interior element
series CAAD Futures
email
last changed 2019/07/29 14:08

_id acadia19_510
id acadia19_510
authors Leder, Samuel; Weber, Ramon; Wood, Dylan; Bucklin, Oliver; Menges, Achim
year 2019
title Distributed Robotic Timber Construction
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 510-519
doi https://doi.org/10.52842/conf.acadia.2019.510
summary Advances in computational design and robotic building methods have the potential to enable architects to author more sustainable, efficient, and geometrically varied systems that shape our built environment. To fully harness this potential, the inherent relationship of design and building processes requires a fundamental shift in the way we design and how we build. High degree of customization in architectural projects and constantly changing conditions of construction environments pose significant challenges for the implementation of automated construction machines. Beyond traditional, human-inspired, industrial robotic building methods, we present a distributed robotic system where the robotic builders are designed in direct relationship with the material and architecture they assemble. Modular, collaborative, single axis robots are designed to utilize standardized timber struts as a basic building material, and as a part of their locomotion system, to create large-scale timber structures with high degrees of differentiation. The decentralized, multi-robot system uses a larger number of simple machines that collaborate in teams to work in parallel on varying tasks such as material transport, placement, and fixing. The research explores related architectural and robotic typologies to create timber structures with novel aesthetics and performances.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2019_197
id caadria2019_197
authors Qian, Kaijie
year 2019
title Building Simplification - A fabrication method based on Augmented Reality
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 495-504
doi https://doi.org/10.52842/conf.caadria.2019.1.495
summary Digital design techniques have improved significantly to enable designers to design with fewer limitations. However, the construction methods to fabricate these design proposals are still lagging behind due to a lack of skilled labour, material constraints, and the effects of gravity. Augmented reality has been developed in recent years, and this allows users to impose 3D virtual objects onto the real world. This essay will thus discuss whether augmented reality can guide unskilled labourers to complete complex work, thus overcoming one of the constraints on fabrication for complicated construction. This essay covers the results of three augmented reality tests using a Kinect device, a projector, and Microsoft HoloLens. It aims to show that augmented reality can indeed be used to guide unskilled labourers during construction to narrow the gap between complex design methods and basic construction techniques. The results indicate that augmented reality can guide such fabrication and thus improve construction methods.
keywords Augmented Reality; Kinect; Microsoft HoloLens; Projector; Unskilled labour
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_359
id ecaadesigradi2019_359
authors Tsikoliya, Shota, Kovaøík, David, Vasko, Imro, Garajová, Petra, Varga, Adam and Osifová, Marketa
year 2019
title InFoamed Matter - Robotic production and assembly of foam-injected structures
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 235-240
doi https://doi.org/10.52842/conf.ecaade.2019.2.235
summary Project InFoamed Matter works with foam and explores the internal logic of the material and develops a construction system based on fluidity and expansion. The basic unit of the system consists of two elements, that continuously exchange their roles in the construction process - the frame (controlling element made of paper or, in later development, from glass or carbon fiber cured in epoxy resin) and the expander (filling element consisting of 2k polyurethane foam). The expander fills up voids within the frame. While initially only the frame plays crucial structural role within a system, the expander being a filling element, eventually the hardening process switches the roles, hardened expander being the structural core and the frame being a form-defining tool. In later development, fiber frame creates a composite together with hardened expander, being able to resist both tension and compression forces. Project further proposes computational model, which generates positions and orientations for placing further components as well as a robotic fiber laying, assembly and injection system, which leads to novel automated construction system based on material behavior.
keywords robotic fabrication; foam; materiality; robotic assembly
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id caadria2019_659
id caadria2019_659
authors Wang, Xiang, Guo, Zhe, Zhang, Xiao, Jin, Jinxi and Yuan, Philip F.
year 2019
title Design, Analysis and Robotic Fabrication of a Bending-Active Shell Structure with Thin Sheets Based on Curved-Crease-Folding Technique
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 63-72
doi https://doi.org/10.52842/conf.caadria.2019.1.063
summary This paper shows a design and building application of an innovative structure concept which is developed by the authors. The long-span shell structure (8m*10m*2.5m) built with 1.5mm thin aluminum sheets demonstrates the possibility to apply bending-active structures with flexible thin sheet material in shell structures to enhance the global and local stiffness. The structure is mainly originated from the curved-crease-folding technique which enhances the structural stiffness by introducing curvature to the surfaces. The Y-shape structural elements define the basic geometrical rules and find its global double-curved geometry via the folding of the three lateral ribs. The full-scale prototype and its design and fabrication techniques show a design framework of the structure from its form-finding, surface optimization, robotic simulated fabrication to the final full-scale assembly. As a pioneer pavilion in a research workshop, students' design with diverse forms also show the widely possible application of this structural concept.
keywords shell structure; thin aluminum sheets; bending-active; robotic creased-folding
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2019_670
id caadria2019_670
authors Zhang, Xiao, Gao, Weizhe, Xia, Ye, Wang, Xiang, Luo, Youyuan, Su, Junbang, Jin, Jinxi and Yuan, Philip F.
year 2019
title Design and Analysis of Bending-Active Formwork for Shell Structures based on 3D-Printing Technology
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 73-82
doi https://doi.org/10.52842/conf.caadria.2019.1.073
summary This paper presents the design and construction of a 3D-printed thin bending-active formwork for shell. In order to use less scaffolding and make a dome with flexible material,3-D print is applied to the formwork. First step is form-finding . Two single -curved surfaces are used to fit the form found by Kanagaroo and then unroll them .Principle stress lines are also printed on the unrolled formwork to enhance it. However, the formwork with stress lines is hard to bend. So, bending-active simulation made by ABAQUS is also applied to find the best mesh pattern to bend. Bend the basic pattern first on the framework and then print Principle stress lines onto it. Karamba is used to simulate the deformation of the shell under gravity load. It is proved that grid made up of stress lines have the best performance The full scale prototype is made up of two pieces shell bent and tied together can stand steadily. Spring-back test shows that the second layer printed on the shell can help to provide deformation.
keywords form-work; form-finding; 3-D printing; geometric analysis; principle stress lines
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaadesigradi2019_599
id ecaadesigradi2019_599
authors Özkar, Mine, Hamzao?lu, Begüm and Özgan, Sibel Yasemin
year 2019
title A Historical Perspective to Fabrication in Architecture for Preserving Heritage
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 619-624
doi https://doi.org/10.52842/conf.ecaade.2019.2.619
summary Digital technologies have recently been at the forefront of the causal link between making and design. A growing number of architecture programs of universities incorporates fabrication to the educational environment, and even to the curriculum. Fabrication technology is now considered among the set of tools students are expected to acquire a basic knowledge of and skills in. Nevertheless, the pedagogical potential of fabrication in communicating traditions of making is underused in an oversight of the continuity of the relevant know-how. Our position is that traditions of making can be the subject matter of fabrication with the objective to remedy the role of fabrication tools in architectural history, sustainable architectural production, and in the field of digital heritage. In this paper, we report on two comparative studies that illustrate how the instrumental factors of two historical crafts can be articulated using fabrication.
keywords computational design; craft; stone carving; tile mosaic
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_811555 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002