CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 61

_id cf2019_005
id cf2019_005
authors Eisenstadt, Viktor; Klaus-Dieter Althoff and Christoph Langenhan
year 2019
title Supporting Architectural Design Process with FLEA A Distributed AI Methodology for Retrieval, Suggestion, Adaptation, and Explanation of Room Configurations
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 24
summary The artificial intelligence methods, such as case-based reasoning and artificial neural networks were already applied to the task of architectural design support in a multitude of specific approaches and tools. However, modern AI trends, such as Explainable AI (XAI), and additional features, such as providing contextual suggestions for the next step of the design process, were rarely considered an integral part of these approaches or simply not available. In this paper, we present an application of a distributed AI-based methodology FLEA (Find, Learn, Explain, Adapt) to the task of room configuration during the early conceptual phases of architectural design. The implementation of the methodology in the framework MetisCBR applies CBR-based methods for retrieval of similar floor plans to suggest possibly inspirational designs and to explain the returned results with specific explanation patterns. Furthermore, it makes use of a farm of recurrent neural networks to suggest contextually suitable next configuration steps and to present design variations that show how the designs may evolve in the future. The flexibility of FLEA allows for variational use of its components in order to activate the currently required modules only. The methodology was initialized during the basic research project Metis (funded by German Research Foundation) during which the architectural semantic search patterns and a family of corresponding floor plan representations were developed. FLEA uses these patterns and representations as the base for its semantic search, explanation, next step suggestion, and adaptation components. The methodology implementation was iteratively tested during quantitative evaluations and user studies with multiple floor plan datasets.
keywords Room con?guration, Distributed AI, Case-based reasoning, Neural networks, Explainable AI
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:11

_id ecaadesigradi2019_474
id ecaadesigradi2019_474
authors Nunes de Vasconcelos, Guilherme, Malard, Maria Lucia, van Stralen, Mateus, Campomori, Maurício, Canavezzi de Abreu, Sandro, Lobosco, Tales, Flach Gomes, Isabella and Duarte Costa Lima, Lucas
year 2019
title Do we still need CAVEs?
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 133-142
doi https://doi.org/10.52842/conf.ecaade.2019.3.133
summary This paper discusses the relevance of CAVE systems in comparison with virtual and augmented reality head-mounted displays in terms of immersion experience, costs, maintenance, ease to use, interactivity, and social interaction. It is based on a comparative study of a systematic literature review comprising the works available at CumInCAD and IEEE databases in the period from 1998-2018, and empirical data from technical visits made to five CAVEs in Europe. The discussion seeks to cover the limits of each technology and questions the need for CAVEs nowadays.
keywords CAVE; Virtual Reality; head mounted display; Augmented reality
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_408
id ecaadesigradi2019_408
authors Lohse, Theresa and Werner, Liss C.
year 2019
title Semi-flexible Additive Manufacturing Materials for Modularization Purposes - A modular assembly proposal for a foam edge-based spatial framework
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 463-470
doi https://doi.org/10.52842/conf.ecaade.2019.1.463
summary This paper introduces a series of design and fabrication tests directed towards the use of bendable 3D printing materials in order to simplify a foam bubble-based geometry as a frame structure for modular assembly. The aspiration to reference a spittlebug's bubble cocoon in nature for a light installation in the urban context was integrated into a computational workflow conditioning light-weight, material-, and cost savings along with assembly-simplicity. Firstly, before elaborating on the project motivation and background in foam structures and applications of 3D-printed thermoplastic polyurethane (TPU) material, this paper describes the physical nature of bubble foams in its relevant aspects. Subsequently this is implemented into the parametric design process for an optimized foam structure with Grasshopper clarifying the need for flexible materials to enhance modular feasibility. Following, the additive manufacturing iterations of the digitally designed node components with TPU are presented and evaluated. Finally, after the test assembly of both components is depicted, this paper assesses the divergence between natural foams and the case study structure with respect to self-organizing behavior.
keywords digital fabrication; 3D Printing; TPU flexibility ; modularity; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_667
id ecaadesigradi2019_667
authors Werner, Liss C.
year 2019
title Form and Data - from linear Calculus to cybernetic Computation and Interaction
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 675-682
doi https://doi.org/10.52842/conf.ecaade.2019.2.675
summary Digital architecture developed in the 1960s and, supported by CAAD the 1990s, has created the path towards an architecture produced by computer and architect in a mutual relationship. The evolution of architecture since the 1970s led to the beginning of the first digital turn in the 1990s, and subsequently to the emergence of new typologies of buildings, architects and design tools; atom-based, bit-based (virtual) [1], and cyber-physical as a combination of both. The paper provides an insight into historical foundations of CAAD insofar as it engages with complexity in mechanics, geometry, and space between the 1600s and 1950s. I will address a selection of principles discovered, and mechanisms invented before computer-aided-architectural-design; those include the typewriter, the Cartesian grid and a pre-cyber-physical system by Hermann von Helmholtz. The paper concludes with a summary and an outlook to the future of CAAD challenged by the variety of correlations of disparate data sets.
keywords HCI; cyber-physical systems; cybernetics; digital history; computational architecture; Helmholtz
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_140
id acadia19_140
authors Dambrosio, Niccol?; Zechmeister, Christoph; Bodea, Serban; Koslowski, Valentin; Gil-Pérez, Marta; Rongen, Bas
year 2019
title Buga Fibre Pavilion
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 140-149
doi https://doi.org/10.52842/conf.acadia.2019.140
summary This research showcases the integrated design process and development of an ultra-light-weight, composite dome structure as a case study for the investigation of high-performance, long-span, fibre-reinforced-polymer (FRP) based building systems. Particular emphasis is given to the exploration of design strategies and the exposure of multidirectional flows of information across different fields under the premise of going beyond preliminary investigations on a demonstrator level, towards full scale architectural applications. Building upon previous research in the realm of lightweight fiber composites conducted at the University of Stuttgart, novel design strategies and fabrication methods are discussed. Based on the design and development of the Buga Fibre Pavilion for the Heilbronn Bundesgartenschau 2019, previously prototypically tested processes are further developed and implemented at a larger scale which attempt to reduce the necessary formwork to a minimum while achieving a flexible and scalable building system.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2019_002
id cf2019_002
authors De Luca, Francesco
year 2019
title Environmental Performance-Driven Urban Design Parametric Design Method for the Integration of Daylight and Urban Comfort Analysis in Cold Climates
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 21
summary Shape of built environment and image of cities are significantly influenced by environmental factors such as access to natural light, air temperature and wind. Adequate quantity of daylight in building interiors is important for occupant wellbeing and energy saving. In Estonia minimum quantity of daylight is required by building standards. Wind speed increased by urban environment at northern latitudes can significantly reduce pedestrian perceived temperature during winter inducing strong cold stress. This paper presents a method for the integration of parametric modeling and environmental simulations to analyze interiors and exteriors comfort of tower building cluster variations in different urban areas in Tallinn. Optimal pattern characteristics such as buildings distance and alignment favoring improvement of interiors daylight and decrease of pedestrian cold stress are presented and discussed.
keywords Daylight, Urban Comfort, Environmental Analysis, PerformanceDriven Urban Design, Parametric Design
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_015
id cf2019_015
authors Ladron de Guevara, Manuel; Luis Ricardo Borunda and Ramesh Krishnamurti
year 2019
title A Multi-Resolution Design Methodology Based on Discrete Models
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 129
summary The use of programming languages in design opens up unexplored and previously unworkable territories, mainly, in conventional architectural practice. In the 1990s, languages of continuity, smoothness and seamlessness dominated the architectural inquiry with the CNC milling machine as its manufacturing tool. Today’s computational design and fabrication technology look at languages of synthesis of fragments or particles, with the 3D printer as its fabrication archetype. Fundamental to this idea is the concept of resolution– the amount of information stored at any localized region. Construction of a shape is then based on multiple regions of resolution. This paper explores a novel design methodology that takes this concept of resolutions on discrete elements as a design driver for architectural practice. This research has been tested primarily through additive manufacturing techniques.
keywords Multi-Resolution Design Methodology; Discrete-Based Computational Design; Resolutions; Additive Manufacturing
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_019
id cf2019_019
authors Lee, Seong-Ki ; Reinhard Koenig and Frank Petzold
year 2019
title Computational Support for Interactive Exploration of Urban Design Variants
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 133
summary This research aim is to develop a design support system for interactive exploration of urban space variants. During the early design process for urban masterplan, the design support system can evaluate the state of the design stage quickly and suggest alternative design variants to the designers. Design variants obtained while developing the design concept can be managed to be re-used. Through the management of design information at each design step, a designer can be supported to explore the history of the design process and reuse it. Therefore, it is possible to support breadth-first and depth-first design modes in solution development in a highly structured manner. Therefore, a user can practi ce informed decision making while preserving ownership during the design process, which can assist designer-led creative design activities.
keywords Interactive Exploration, Urban Design, Design Support System, Design Process, Design Management
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_064
id cf2019_064
authors Noronha Pinto de Oliveira E Sousa, Marcela and Maria Gabriela Caffarena Celani
year 2019
title Towards Urban Densification Using Shape Grammar to Develop Components for Retrofitting Street Design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 505
summary Cities will have to become denser to accommodate expanding urban populations, creating a challenge for urban mobility. Existing urban infrastructure must be retrofitted to promote the use of collective and active modes of transportation. This article presents a prescriptive grammar, for retrofitting urban street design in the context of densification, based on patterns extracted from current guides and manuals. This prescriptive grammar is a crossover between concepts of shape grammar and pattern language, joining generative capabilities of geometric shape grammars with descriptive and prescriptive approaches commonly referred to as design patterns. An example is presented to illustrate its application.
keywords Shape Grammar, Parametric Urbanism, Travel Behavior
series CAAD Futures
email
last changed 2019/07/29 14:18

_id cf2019_026
id cf2019_026
authors Wibranek, Bastian; Oliver Tessmann, Boris Belousov and Alymbek Sadybakasov
year 2019
title Interactive Assemblies: Man-Machine Collaborations for a Material-Based Modeling Environment
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 186
summary This paper presents our concept, named Interactive Assemblies, which facilitates interaction between man and machine in construction process in which specially designed building components are used as a design interface. In our setup, users physically manipulate and reposition building components. The components, digitized by means of machine sensing, become a part of the design interface. Each of the three experiments included in this paper examines a different robotic sensor approach that helps transfer of data, including the position and shape of each component, back into the digital model. We investigate combinations of material systems (material computation, selfcorrecting assembly) and matching sensors. The accumulated data serves as input for design algorithms and generates robot tool paths for collaborative fabrication. Using real-world geometry to move from virtual design tools directly to physical interaction and back, our research proposes enhanced participation of human actors in robotic construction processes in architecture.
keywords Man-Machine Collaboration, Robotics, Machine Sensing, As-Built Modelling, Interactive Assemblies
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_061
id ecaadesigradi2019_061
authors Alkadri, Miktha Farid, De Luca, Francesco, Turrin, Michela and Sariyildiz, Sevil
year 2019
title Making use of Point Cloud for Generating Subtractive Solar Envelopes
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 633-640
doi https://doi.org/10.52842/conf.ecaade.2019.1.633
summary As a contextual and passive design strategy, solar envelopes play a great role in determining building mass based on desirable sun access during the predefined period. With the rapid evolution of digital tools, the design method of solar envelopes varies in different computational platforms. However, current approaches still lack in covering the detailed complex geometry and relevant information of the surrounding context. This, consequently, affects missing information during contextual analysis and simulation of solar envelopes. This study proposes a subtractive method of solar envelopes by considering the geometrical attribute contained in the point cloud of TLS (terrestrial laser scanner) dataset. Integration of point cloud into the workflow of solar envelopes not only increases the robustness of final geometry of existing solar envelopes but also enhances awareness of architects during contextual analysis due to consideration of surface properties of the existing environment.
keywords point cloud data; solar envelopes; subtractive method; solar access
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ecaadesigradi2019_628
id ecaadesigradi2019_628
authors Borunda, Luis, Ladron de Guevara, Manuel and Anaya, Jesus
year 2019
title Design Method for Optimized Infills in Additive Manufacturing Thermoplastic Components
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2019.1.493
summary The following article extends and tests computational methodologies of design to consider Finite Element Analysis in the creation of optimized infill structures based on regular and semi-regular patterns that comply with the geometrical constraints of deposition. The Stress-Deformation relationship manifested in Finite Element Analysis is structured in order to influence the geometrical arrangement of the complex spatial infill. The research presents and discusses a program of performance informed infill design, and validates the generalizability of a method of internalizing and automating Finite Element Method (FEM) processing in Fused Deposition Modeling (FDM) workflows, and tests manufacturability of the methods through its ability to handle the FDM process constraints of FEM influenced intricate geometries.
keywords Additive Manufacturing; Finite Element Analysis; Fused Deposition Modeling; 3D infill
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_202
id ecaadesigradi2019_202
authors Brasil, Alexander Lopes de Aquino and Franco, Juarez Moara Santos
year 2019
title Customizing Mass Housing in Brazil: Introduction to an Integrated System
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 605-612
doi https://doi.org/10.52842/conf.ecaade.2019.1.605
summary The current work presents an original parameterized wood frame system, a computational simulation of its structural performance and preliminary results of its digital fabrication and assemblage process. The project follows the concept of integration between CAD, CAE and CAM systems, aiming at the automation of the processes that make mass customization of social housing in Brazil practicable.
keywords mass customization; social housing; parametric and algorithmic design; simulation, prediction, and evaluation; digital fabrication; building system
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_205
id ecaadesigradi2019_205
authors Campos, Filipe Medéia de, Leite, Raquel Magalh?es, Prudencio, Christina Figueiredo, Dias, Maíra Sebasti?o and Celani, Gabriela
year 2019
title Prototyping a Facade Component - Mixed technologies applied to fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 179-186
doi https://doi.org/10.52842/conf.ecaade.2019.1.179
summary During the last decade, mass customization in developing countries has been rising. The combination of conventional methods and materials with computer numeric control technologies offers a possibility of merging established craftsmanship to the production of personalized components with mass production efficiency. This article aims to present the development of a facade component prototype as a means to prospect possibilities for mixing parametric design and digital fabrication to casting, especially in developing countries like Brazil. This is an applied research with an exploratory and constructive approach, which was a result of a graduate class structured on a research by design basis. The conceptual development and prototyping of the artifact followed iterative cycles, considering its performance, fabrication methods and feasibility. The selection of materials that are commonly used in Brazilian architecture, like concrete, facilitates the component adoption as as a facade solution. The main conclusion emphasizes the need of involvement between academia and industry for the development of innovative products and processes, and highlights different levels of mass customization to include a range of manufacturing agents, from major industries to local craftspeople.
keywords digital fabrication; mass customization; prototyping; facade component
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_322
id ecaadesigradi2019_322
authors Carl, Timo and Schein, Markus
year 2019
title Parametric Patchwork - Advancing the Development of an Organic Photovoltaic Carrier System through Various Computational Methods
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 25-34
doi https://doi.org/10.52842/conf.ecaade.2019.3.025
summary This paper presents a strategy for implementing computational methods in education to solve specific project related research challenges. In our case, we investigate novel solutions for Organic Photovoltaic Carrier Systems. Therefore, environmental forces (especially the sun and shade) are important design drivers in all projects. Whilst the individual projects are limited to one semester, it is our aim to advance and accumulate these patches within a longer-term research strategy. Especially design-build projects that include digital fabrication often require a skillset not always available in a design studio environment. Providing simple parametric patches frees up time for creative investigations and allows tackling projects that are more complex. In the following, we will present and discuss a series of patches developed over the course of five projects that became our case studies. We conclude, by identifying relevant aspects that might be generalized and evaluate our insights for others.
keywords Computational Design, Parametric Design Strategies, Environmental Design Parameters, CAAD education
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_405
id ecaadesigradi2019_405
authors da Cunha Teixeira, Luísa and Cury Paraizo, Rodrigo
year 2019
title Caronae - ridesharing and first steps into commuting opportunitie of academic exchange
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 805-816
doi https://doi.org/10.52842/conf.ecaade.2019.1.805
summary Location-based mobile applications have been a rising theme for academics in the field of urbanism and in urban and transportation, because of the potential of transformation they might bring to the urban landscape (De Souza e Silva, 2013). One of the possibilities we study here is to observe social encounters fostered by commuting rides. In this paper, we try to examine the practice from the broad perspective of estimating the environmental benefits, in a context where digital information technology is wielded to address problems old and new (Townsend, 2014). This paper aims to analyze the potential of transformations that new ICTs bring to urban mobility, using as case study the official ridesharing system of the Federal University of Rio de Janeiro, the Carona? project. The system was developed focusing on the reduction of the number of motorized trips to the University, as well as the amount of CO2 generated by them. Here we analyze the dynamics of ridesharing, using the system data, and also try to observe the role it may play towards the promotion of integration in the UFRJ community.
keywords mobile apps; urban mobility; ridesharing; caronae ufrj
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_288
id ecaadesigradi2019_288
authors da Silva Lopes Vieira, Thomaz and Schulz, Jens-Uwe
year 2019
title Design Method Aided by MABS and Cloud Computing - Framework integrating: construction techniques, materials, and fabrication
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 195-205
doi https://doi.org/10.52842/conf.ecaade.2019.1.195
summary This paper presents a novel method based in Multi-Agent Based Simulation (MABS), Cloud Computing, and the combination of big data analytics and IoT. The method performs in two layers: it assists designers with information coming from previews of projects and surroundings, and, it automates some procedures according to parameters and interactions between agents. The first part of this paper briefly describes the state of the art and challenges of the real estate market. The second chapter highlight gaps and future challenges in design practice, and in the third chapter, it introduces the method. To conclude, in the last part, this concept is analyzed through a pilot project under development in our institution.
keywords Computational design; Multi-Agent-Based system; Robotic fabrication; Cyber-Physical Systems; Big Data; Internet of Things
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_272860 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002