CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id acadia19_16
id acadia19_16
authors Hosmer, Tyson; Tigas, Panagiotis
year 2019
title Deep Reinforcement Learning for Autonomous Robotic Tensegrity (ART)
doi https://doi.org/10.52842/conf.acadia.2019.016
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 16-29
summary The research presented in this paper is part of a larger body of emerging research into embedding autonomy in the built environment. We develop a framework for designing and implementing effective autonomous architecture defined by three key properties: situated and embodied agency, facilitated variation, and intelligence.We present a novel application of Deep Reinforcement Learning to learn adaptable behaviours related to autonomous mobility, self-structuring, self-balancing, and spatial reconfiguration. Architectural robotic prototypes are physically developed with principles of embodied agency and facilitated variation. Physical properties and degrees of freedom are applied as constraints in a simulated physics-based environment where our simulation models are trained to achieve multiple objectives in changing environments. This holistic and generalizable approach to aligning deep reinforcement learning with physically reconfigurable robotic assembly systems takes into account both computational design and physical fabrication. Autonomous Robotic Tensegrity (ART) is presented as an extended case study project for developing our methodology. Our computational design system is developed in Unity3D with simulated multi-physics and deep reinforcement learning using Unity’s ML-agents framework. Topological rules of tensegrity are applied to develop assemblies with actuated tensile members. Single units and assemblies are trained for a series of policies using reinforcement learning in single-agent and multi-agent setups. Physical robotic prototypes are built and actuated to test simulated results.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia20_382
id acadia20_382
authors Hosmer, Tyson; Tigas, Panagiotis; Reeves, David; He, Ziming
year 2020
title Spatial Assembly with Self-Play Reinforcement Learning
doi https://doi.org/10.52842/conf.acadia.2020.1.382
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 382-393.
summary We present a framework to generate intelligent spatial assemblies from sets of digitally encoded spatial parts designed by the architect with embedded principles of prefabrication, assembly awareness, and reconfigurability. The methodology includes a bespoke constraint-solving algorithm for autonomously assembling 3D geometries into larger spatial compositions for the built environment. A series of graph-based analysis methods are applied to each assembly to extract performance metrics related to architectural space-making goals, including structural stability, material density, spatial segmentation, connectivity, and spatial distribution. Together with the constraint-based assembly algorithm and analysis methods, we have integrated a novel application of deep reinforcement (RL) learning for training the models to improve at matching the multiperformance goals established by the user through self-play. RL is applied to improve the selection and sequencing of parts while considering local and global objectives. The user’s design intent is embedded through the design of partial units of 3D space with embedded fabrication principles and their relational constraints over how they connect to each other and the quantifiable goals to drive the distribution of effective features. The methodology has been developed over three years through three case study projects called ArchiGo (2017–2018), NoMAS (2018–2019), and IRSILA (2019-2020). Each demonstrates the potential for buildings with reconfigurable and adaptive life cycles.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

No more hits.

HOMELOGIN (you are user _anon_873762 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002