CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_173
id caadria2019_173
authors Ng, Jonathan Ming-En, Ho, Samuel Yu De, Ng, Truman Wei Cheng, Soh, Jia Ying and Dritsas, Stylianos
year 2019
title Fabrication of Ultra-Lightweight Parametric Glass Fiber Reinforced Shell Assemblies
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 13-22
doi https://doi.org/10.52842/conf.caadria.2019.1.013
summary We present an experimental form-finding technique for ultra-thin glass fiber reinforced concrete components and assemblies. The objective is to challenge conventional concrete use in construction, often perceived as a massive and compressive structural material. Instead, we targeted production of fine shell assemblies principally operating in tension. To achieve thin profile components, we use a compliant molding technique where premixed GFRC is cast in polyethylene bags. Subsequently, a robotic arm system pins the bags on a substrate plate and the setup is inverted whereby gravity induces a curvature to components while concrete cures. Use of parametric modeling, computer simulation and statistical experimental methods allowed us to understand the behavior of the material process and translate computationally modeled designs into physical artifacts. We discuss the opportunity for digital fabrication methods to fuse with traditional form-finding techniques, contrast the use of computational modeling techniques and present a series of prototypes created through our process.
keywords Digital Fabrication; Glass Fibre Reinforced Concrete; Form-Finding
series CAADRIA
email
last changed 2022/06/07 07:58

No more hits.

HOMELOGIN (you are user _anon_859830 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002