CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id caadria2019_360
id caadria2019_360
authors Luo, Lin and Liang, Jing
year 2019
title Simulation Study on Heating and Cooling Energy-Saving Design of University Library Building Forms in the Severe Cold Region of China based on Honeybee and Ladybug
doi https://doi.org/10.52842/conf.caadria.2019.1.725
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 725-735
summary Based on the parametric simulation platform and tools, the paper studied the influence of building orientation, building size and window-to-wall ratio on heating and cooling energy consumption of the typical university library in the severe cold region of China. The study established the multiple linear regression models of form design parameters and heating and cooling energy consumption respectively, determined the weight of each parameter, proposed the optimal energy-saving orientation selection and form parameter groups. The energy-saving design strategies of the typical university library in the severe cold region were put forward from the three sub-aspects of building orientation, building size and window-to-wall ratio, and from a comprehensive point of view. The study provides effective support for energy consumption estimation in the stage of building form design, and has important practical significance for sustainable development of university buildings.
keywords Energy-saving design; Heating and cooling energy consumption simulation; Form design parameters; University library; Severe cold region
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_360
id ecaadesigradi2019_360
authors Wei, Likai, Ta, La, Li, Liang, Han, Yang, Feng, Yingying, Wang, Xin and Xu, Zhen
year 2019
title RAF: Robot Aware Fabrication - Hand-motion Augmented Robotic Fabrication Workflow and Case Study
doi https://doi.org/10.52842/conf.ecaade.2019.2.241
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 241-250
summary Fabricating process with robotic awareness and creativity makes architect able to explore the new boundary between digital and material world. Although parametric and generative design method make diverse processing of materials possible for robots, it's still necessary to establish a new design-fabrication framework, where we could simultaneously deal with designers, robots, data, sensor technology and material natural characters. In order to develop a softer system without gap between preset program and robot's varying environments, this paper attempts to establish an environment-computer-robot workflow and transform traditional robotic fabrication from linear to more tangible and suitable for architects' and designers' intuitive motion and gesture. RAF (Robotic Aware Fabrication), a concept of real-time external enhancement fabrication is proposed, and a new workflow of HARF (Hand-motion Augmented Robotic Fabrication) is developed, where motion sensor captures designer's hand-motion, filter algorithm recognizes the intention and update the preset program, robotic controller and RSI (Robotic Sensor Interface) adjusts robot's TCP (Tool Center Point) path in real time. With HARF workflow, two case studies of Hand-motion robotic dance and Free-form concrete wall are made.
keywords RAF; HARF; Hand-motion Sensor; Styrofoam Mold; Concrete Wall; RSI
series eCAADeSIGraDi
email
last changed 2022/06/07 07:58

_id caadria2019_411
id caadria2019_411
authors Yan, Liang, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2019
title Intergrating UAV Development Technology with Augmented Reality toward Landscape Tele-Simulation
doi https://doi.org/10.52842/conf.caadria.2019.1.423
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 423-432
summary Augmented reality (AR) is an emerging landscape simulation technology being used in the construction industry to reduce losses in subsequent projects by reviewing the landscape before a building is completed. However, since AR projects virtual models into the real world through portable devices, the designer's review perspective and the number of people able to participate in the review process is limited. Therefore, a system that combines AR and unmanned aerial vehicle (UAV) development with telecommunications technology was designed and prototyped to use the UAV camera as the source of the video stream of AR. This frees the designer's review perspective through ground control and allows remote communication with off-site people, thus allowing more users site access and improving system usability. This paper details the construction of the integrated system, including the integrating of different development languages, environments, and mutual calls used, the AR and UAV development modules, the construction process of the telecommunication protocol, and mutual data interoperability.
keywords Landscape simulation; tele-simulation; Markerless Augmented Reality (AR); Unmanned Aerial Vehicle (UAV); telecommunication
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2019_066
id cf2019_066
authors Zheng, Hao ; Zhe Guo and Yang Liang
year 2019
title Iterative Pattern Design via Decodes Python Scripts in Grasshopper
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 526-537
summary With the rapid development of parametric design, Grasshopper, as a visual programming tool for architects, has been widely used. However, although Grasshopper is powerful for data processing, there is a weakness that the data only flows linearly from the first component to the last component, which means it’s impossible to update the data iteratively by loop structure in native Grasshopper. So here, we introduce a Python based scripting plug-in Decodes, adding the function of loop construct into Grasshopper while integrating the basic graphical operations with faster mathematical matrix calculation. What’s more, in order to bring Decodes into play as far as possible, four iterative patterns are researched and designed through Decodes scripting, demonstrating the strength and necessity of loop construct. The patterns include iterative subdivision patterns (center tiling and pinwheel tiling) and iterative growing patterns (semi-regular tiling and swarm behavior). Also, the core parts of their codes are revealed and deciphered in this article.
keywords Algorithmic design; Iterative pattern; Programming;
series CAAD Futures
email
last changed 2019/07/29 14:18

No more hits.

HOMELOGIN (you are user _anon_415005 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002