CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id caadria2019_270
id caadria2019_270
authors Liu, Quan, Li, Xintian, Mao, Ming, Gu, Mengjie and Ye, Qingfeng
year 2019
title The Study on the Relationship between Storm Surface Runoff and the Form of Street-Block using the Cellular Automata Model
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 331-340
doi https://doi.org/10.52842/conf.caadria.2019.1.331
summary This paper focuses on the reduction of storm surface runoff through optimizing the layout of permeable green area and other morphological elements of the urban street-block, and a distributed hydrological model based on cellular automata (CA) are used to accurately distinguish the impact of storm runoff reduction of various blocks, accordingly helping to find the morphological principle of surface runoff optimization. The model includes morphological setting and hydrological setting. The morphological setting includes the shape and size, land cover, and slope of street-block. The hydrological setting is based on Nanjing, China and include the process of rainfall, infiltration, surface flow, out flow. Comparing the results of runoff indicators, it can be found that the runoff can be greatly influenced by the layout of morphological elements of street-block. Therefore, it can be reduced by optimization the form of street-block in design process.
keywords urban form; street-block; building fabric; storm surface runoff; cellular automata
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2019_049
id cf2019_049
authors Lu, Heng; Chen Liu, Daekwon Park, Guohua Ji and Ziyu Tong
year 2019
title Pneumatic Origami Joints A 3D Printed Flexible Joint
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 432
summary This paper describes the design and fabrication process of an adaptive joint using foldable 3D printed structures encased in heat-sealed synthetic polymer films (e.g. airtight plastic casing). The proposed joint can be pneumatically actuated using the airtight casing, and the shape of the deformation can be controlled using origami-inspired 3D printed structures. A zigzag-gap microstructure is designed for the connection portion of the origami structure inside the joint, in order that the rigid 3D printed material (PLA) acquires properties of mollusk material, such as flexibility and softness. Finally, the paper presents some applications adopting pneumatic origami joints which can interact with people or adapting indoor environment, and compares the advantages of this pneumatic technology with mechanical technology.
keywords 3D printing · Adaptive joint · Pneumatic architecture · Origami structure
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2019_227
id caadria2019_227
authors Liu, Jie, Xu, Weiguo, Chang, Jiahui, Ma, Hongtao and Xu, Qingqing
year 2019
title Flipped - An Interactive Installation Working as Social Catalyst for Social Anxiety Disorder Students
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 515-524
doi https://doi.org/10.52842/conf.caadria.2019.1.515
summary This research attempts to use an architectural design approach to increase the opportunities to participate in social activities and the chances to establish friendship for social anxiety disorder students. By analyzing the cause and treatment of social anxiety disorder, we propose an entertaining, therapeutic interactive installation named Flipped which working as a social catalyst for social anxiety disorder students. In order to build the installation space intelligent and friendly, a variety of advanced technologies have been embedded into the design. The paper will detail the development of the design concept, the technical implementation of the construction, and the problems encountered during the experience activities.
keywords Interactive Installation; Social Anxiety Disorder; Therapeutic Interactive Environment; Social Catalyst
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2019_008
id cf2019_008
authors Han, Zhen; Ning Cao, Gang Liu and Wei Yan
year 2019
title MOPSO for BIM: A Multi-Objective Optimization Tool Using Particle Swarm Optimization Algorithm on a BIMbased Visual Programming Platform
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 39-51
summary With the increasing applications of computational methods in the field of design optimization, intelligent metaheuristic algorithms are playing a more important role in building performance optimization. To enable the integration of optimization algorithms with Building Information Modeling (BIM), this research implemented the Particle Swarm Optimization (PSO) algorithm on Revit + Dynamo, which is a parametric BIM platform. A MultiObjective PSO (MOPSO) Solver has been developed in Dynamo using MATLAB and C# programming languages. The methodology of the research and the validation studies are presented in the paper. The validation studies prove the effectiveness of the MOPSO Solver for both standard optimization test functions and an optimization example of a simplified building design.
keywords Particle Swarm Optimization, BIM, multi-objective optimization, visual programming
series CAAD Futures
email
last changed 2019/07/29 14:08

_id acadia19_404
id acadia19_404
authors Liu, Henan; Liao, Longtai; Srivastava, Akshay
year 2019
title AN ANONYMOUS COMPOSITION
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 404-411
doi https://doi.org/10.52842/conf.acadia.2019.404
summary Within the context of continuous technology transformations, the way scientists and designers process data is changing dramatically from simplification and explicit defined rules to searching and retrieving. Ideally, such a trending method can eliminate issues including deviation and ambiguity with the help of hypothetically unlimited computational power. To process data in this manner, artificial intelligence is necessary and needs to be integrated into the design process. An experiment of a design process that consists of a generative model, a data library, and a machine learning system (GAN) is introduced to demonstrate its effectiveness. The methodology is further evaluated by comparing its output with its input targets, which proves the possibility of employing machine learning systems to aggressively process data and automate the design process. Further improvement of such methodology, including judging criteria and possible applications, and the sensibility of the machine is also discussed at the end.
keywords Machine Learning, Automation, Variables, Data Processing, Sensibility, Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

No more hits.

HOMELOGIN (you are user _anon_603613 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002