CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 12 of 12

_id cf2019_054
id cf2019_054
authors Bae, Jiyoon and Daekwon Park
year 2019
title Weeping Brick The Modular Living Wall System Using 3D Printed Porous Ceramic Materials
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 437
summary The goal of this research is to design and fabricate a modular living wall brick system that purifies and cools air for various indoor environments. The research utilizes ceramic 3d printing techniques for fabrication; and living plants in conjunction with evaporative cooling techniques for indoor air quality control. The brick is made of soil which become porous after firing or drying. Water from the reservoirs slowly weep through the porous brick, creating a layer of water on the surface of the brick. The air movement around the saturated brick creates evaporative cooling and the hydro-seeded plants absorb water from the surface. The shape and texture of the Weeping Brick maximizes the cooling effect via large surface area. As an aggregated wall system, the water circulates from unit to unit by gravity through interconnected reservoirs embedded within each unit. The plants and moss transform the Weeping Brick into a living wall system, purifying and conditioning the indoor air.
keywords Living Wall System, Modular Brick, Ceramic 3D Printing, Evaporative Cooling
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_273
id ecaadesigradi2019_273
authors Hadighi, Mahyar and Duarte, Jose
year 2019
title Using Grammars to Trace Architectural Hybridity in American Modernism - The case of William Hajjar single-family house
doi https://doi.org/10.52842/conf.ecaade.2019.1.529
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 529-540
summary In this paper, mid-century modern single-family houses designed by William Hajjar are analyzed through a shape grammar methodology within the context of the traditional architecture of an American college town. A member of the architecture faculty at the Pennsylvania State University, Hajjar was a practitioner in State College, PA, where the University Park campus is located, and an influential figure in the history of architecture in the area. The residential architecture he designed for and built in the area incorporates many of the formal and functional features typical of both modern European architecture and traditional American architecture. Based on a computational methodology, this study offers an investigation into this hybridity phenomenon by exploring Hajjar's architecture in relation to the traditional American architecture prevalent in the college town of State College.
keywords shape grammar; American architecture; William Hajjar; hybridity; college town
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id caadria2019_404
id caadria2019_404
authors Hyejin, Park, Hyeongmo, Gu, Woojun, Lee, Inhan, Kim and Seungyeon, Choo
year 2019
title A Development of KBIMS-based Building Design Quality Evaluation and Performance Review Interface
doi https://doi.org/10.52842/conf.caadria.2019.1.747
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 747-756
summary Recently, The South Korean national government and local governments in Korea are pursuing national R & D tasks that can be used in the design stage to expand the BIM technology to the public environment of the future city, such as the construction of the IT integrated architecture design environment and the convenient construction administrative system environment. Among these R & D researches, various studies are continuing to provide more convenient and accurate architectural services at the licensing stage in order to promote the introduction and practical use of BIM in the Korean construction industry. Typical examples are BIM-based building design quality evaluation and building performance review technology development. Therefore, the goal of this study is to introduce the case of developing the performance review interface according to the regulation and required performance criterion of BIM model using KBIMS and analyze the possibility of evaluating building design quality by applying this to a practical project.
keywords OpenBIM; Design Automation; Performance Review; Design Quality; Legal Review
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2019_057
id cf2019_057
authors Kim, Haeyeon and Ju Hong Park
year 2019
title The design and implementation of a large-scale 3D Printing system with tensegrity and cable-suspended parallel robotic system
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 473-484
summary In this paper, a novel design of 3D printing system is presented. We proposed a large-scale 3D printing system with tensegrity structure and cablesuspended parallel robotic system(CPR). It has an advantage in the construction field, especially for building habitats in extreme environment such as Mars. Compare to a currently used 3D printer, and it has lightweight and a wide range of workspace. We implemented a 3D printer with CPR and tensegrity framework. The project is an initiation of a long-term research; accordingly, this paper limits its work scope by demonstrating the 3D printability of the system with CPR and developing a tensegrity framework. To validate 3D printability, we independently tested two scenarios. One is a table-size 3D printing validation as a fast prototype, and the other one is a small building-size 3D printing for testing large-scale 3D printability. As a validation, we used an LED bulb attached on a 3D printer head to trace its movements in workspace. We illustrate that the use of CPR is highly effective and scalable system for a large-scale 3D printing; additionally, tensegrity could be an effective alternative for its structural framework.
keywords Digital Fabrication, 3D Printing, Tensegrity, Cable-Suspended Parallel Robotics
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2020_431
id caadria2020_431
authors Kim, Jong Bum, Balakrishnan, Bimal and Aman, Jayedi
year 2020
title Environmental Performance-based Community Development - A parametric simulation framework for Smart Growth development in the United States
doi https://doi.org/10.52842/conf.caadria.2020.1.873
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 873-882
summary Smart Growth is an urban design movement initiated by Environmental Protection Agency (EPA) in the United States (Smart Growth America, 2019). The regulations of Smart Growth control urban morphologies such as building height, use, position, section configurations, faƧade configurations, and materials, which have an explicit association with energy performances. This research aims to analyze and visualize the impact of Smart Growth developments on environmental performances. This paper presents a parametric modeling and simulation framework for Smart Growth developments that can model the potential community development scenarios, simulate the environmental footprints of each parcel, and visualize the results of modeling and simulation. We implemented and examined the proposed framework through a case study of two Smart Growth regulations: Columbia Unified Development Code (UDC) in Missouri (City of Columbia Missouri, 2017) and Overland Park Downtown Form-based Code (FBC) in Kansas City (City of Overland Park, 2017, 2019). Last, we discuss the implementation results, the limitations of the proposed framework, and the future work. We anticipate that the proposed method can improve stakeholders' understanding of how Smart Growth developments are associated with potential environmental footprints from an expeditious and thorough exploration of what-if scenarios of the multiple development schemes.
keywords Smart Growth; Building Information Modeling (BIM); Parametric Simulation; Solar Radiation
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2019_049
id cf2019_049
authors Lu, Heng; Chen Liu, Daekwon Park, Guohua Ji and Ziyu Tong
year 2019
title Pneumatic Origami Joints A 3D Printed Flexible Joint
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 432
summary This paper describes the design and fabrication process of an adaptive joint using foldable 3D printed structures encased in heat-sealed synthetic polymer films (e.g. airtight plastic casing). The proposed joint can be pneumatically actuated using the airtight casing, and the shape of the deformation can be controlled using origami-inspired 3D printed structures. A zigzag-gap microstructure is designed for the connection portion of the origami structure inside the joint, in order that the rigid 3D printed material (PLA) acquires properties of mollusk material, such as flexibility and softness. Finally, the paper presents some applications adopting pneumatic origami joints which can interact with people or adapting indoor environment, and compares the advantages of this pneumatic technology with mechanical technology.
keywords 3D printing · Adaptive joint · Pneumatic architecture · Origami structure
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_286
id ecaadesigradi2019_286
authors Park, Jung Eun and Lee, Hyunsoo
year 2019
title Parametric Design Model of Urban Collective Housing - Based on the Constructal Theory
doi https://doi.org/10.52842/conf.ecaade.2019.2.385
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 385-392
summary Most cities is becoming densely populated in unstable society. Demand for single-person households is increasing and also the demand for collective housing is increasing. In this situation, urban housing should be open and flexible and should move toward increasing opportunities for social exchange and satisfaction of resident. In this paper, development of new collective housing was explored to enable flexible and efficient communication and sharing by utilizing branch structure through Constructal theory on efficient flow in system. The methodology was proposed for future collective housing design through parametric design model with tree diagram that show the flow of shared spaces. This could be a solution to future social sustainability as a proposal to increase the shareability and respond to the demand for new building shapes.
keywords Collective housing; Parametric design; Branch structure
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id caadria2019_176
id caadria2019_176
authors Sandstrom, Alice and Park, Hyoung-June
year 2019
title Reflection in Action - An educational indie video game with design schema
doi https://doi.org/10.52842/conf.caadria.2019.2.303
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 303-312
summary This paper outlines the development of an educational indie video game in which a set of design rules are generated as a schema from player actions with the spatial components of architectural precedents in a given library. Each player's outcome is scored with its comparison to the functional sequences of the original precedent and its formal arrangement. The implementation of the proposed game within UNITY is introduced.
keywords Shape Grammar; Indie Game; Schema; Design Rules; Scoring
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2019_003
id cf2019_003
authors Steinfeld, Kyle; Katherine Park, Adam Menges and Samantha Walker
year 2019
title Fresh Eyes A framework for the application of machine learning to generative architectural design, and a report of activities at Smartgeometry 2018
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 22
summary This paper presents a framework for the application of Machine Learning (ML) to Generative Architectural Design (GAD), and illustrates this framework through a description of a series of projects completed at the Smart Geometry conference in May of 2018 (SG 2018) in Toronto. Proposed here is a modest modification of a 3-step process that is well-known in generative architectural design, and that proceeds as: generate, evaluate, iterate. In place of the typical approaches to the evaluation step, we propose to employ a machine learning process: a neural net trained to perform image classification. This modified process is different enough from traditional methods as to warrant an adjustment of the terms of GAD. Through the development of this framework, we seek to demonstrate that generative evaluation may be seen as a new locus of subjectivity in design.
keywords Machine Learning, Generative Design, Design Methods
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_265
id ecaadesigradi2019_265
authors Vegas, Gonzalo, Bernal, Marcelo and Calvo, Francisco
year 2019
title Multi-Criteria Agent Based Systems - Generation of circulations through local decisions
doi https://doi.org/10.52842/conf.ecaade.2019.2.121
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 121-130
summary This study explores to what extent Agent Based Systems (ABS) can handle multi-criteria optimization problems. The implementation of ABS in the field of optimization has limitations to address multiple criteria in a continuous generation process due to ABS usually merge the perceived information in a single response. To address this limitation, we increase the responsiveness of the systems through a multiple production approach. This approach breaks down the problem into two parts: the configuration through the interactions of the agents, and the overall performance through their local decisions. The method is tested in a case study of the network circulations of a park, optimizing the slope, views and sun. Performance and differentiation capabilities are evaluated in populations generated in two different scenarios. Data analysis methods verify the effectiveness of the algorithm and quantify the influence of each parameter on the final results.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_478
id acadia19_478
authors Vercruysse, Emmanuel
year 2019
title Autonomous Architectural Operations
doi https://doi.org/10.52842/conf.acadia.2019.478
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 478-489
summary The research set out in this paper investigates the conception, testing, and implementation of an advanced and bespoke workflow. By hybridizing a diverse set of technologies and processes, an innovative fabrication strategy was developed that combines large scale glue-laminated timber frames with a robotic band-saw application. The design strategy was influenced by a number of key preoccupations: exploring the relationship between drawing and making, evenly distributing analogue and digital technologies, and advancing alternatives modes of architectural practice. The project regards intuitive design processes as an important driver and looked to apply digital tools lightly, aiming to precisely embed them within established timber fabrication processes. This workflow was tested through the design and fabrication of a timber skeleton that provides the structural system for a library building at Hooke Park and acts as an articulated armature supporting the library’s envelope and accommodates its internal workings. Through the production of the sculptural skeleton, the project challenges conventions of existing methodologies and ultimately brings about a morphologic innovation in timber construction through the closed geometry glulam component.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaadesigradi2019_508
id ecaadesigradi2019_508
authors Yenice, Yagmur and Park, Daekwon
year 2019
title V-INCA - Designing a smart geometric configuration for dry masonry wall
doi https://doi.org/10.52842/conf.ecaade.2019.2.515
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 515-520
summary Soil is still used as a building material in many parts of the world, especially in rural areas. Approximately 30% of the world's population is still living in shelters made by soil (Berge 2009). One of the techniques is using soil in mudbrick form, which is sun dried instead of being fired in kilns. However, mud bricks have low compressive and tensile strength. Instead of enhancing the mix formula, we focus on designing the geometry of the brick itself to improve walls' overall compressive and tensile strength. The goal of the research is to explore an innovative way to build masonry walls through geometrical examination together with computer aided design. Unlike traditional horizontal laying of the rectangular brick elements, 3D designed blocks take advantage of gravity and foster an accelerated assembly without mortar. They create a balance point in the middle of the wall during the construction. The geometry of V-INCA blocks allows dry construction which will reduce the amount of time spent on the site. Load distribution and the friction between two surfaces are sufficient to have a dry construction. Thus, a wall built with V-INCA is stronger intrinsically due to its geometry.
keywords Dry masonry construction; smart geometrical design; on-site material; compressed earth blocks; Inca masonry
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_177208 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002